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A gene-expression microarray datum is modeled as an exponential expression signal (log-normal dis-
tribution) and additive noise. Variance-stabilizing transformation based on this model is useful for
improving the uniformity of variance, which is often assumed for conventional statistical analysis
methods. However, the existing method of estimating transformation parameters may not be perfect
because of poor management of outliers. By employing an information normalization technique, we
have developed an improved parameter estimation method, which enables statistically more straight-
forward outlier exclusion and works well even in the case of small sample size. Validation of this
method with experimental data has suggested that it is superior to the conventional method.
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1. Introduction

A typical use of gene-expression microarray data is to detect differentially expressed genes
under relevant biological conditions. For this purpose, analysis of variance (ANOVA) is
applicable, but its assumption of uniform variance is often violated by microarray data,
resulting in unreliablep-values. This characteristic of microarray data can be explained by
a model of an exponential signal and additive noise.1 Moreover, variance-stabilizing trans-
formation based on this model can improve variance uniformity, leading to more accurate
and sensitive statistical results.2,3,4,5

Problems arise owing to the assumptions underlying analysis methods. If we had ‘exact’
analysis methods that could deal with any given distribution, we would not need variance-
stabilizing transformation; in fact, variance stabilization does not affect the results of ‘ex-
act’ analyses. However, such ideal analysis methods are difficult to realize. Therefore, many
conventional analysis methods employ the assumptions of uniform variance and normal-
ity. Even non-parametric tests are not always an exception to this; e.g., a non-parametric
version of ANOVA, the Kruskal-Wallis test, assumes identical distributions (but allows
shifting) for each group, thus uniform variances are indispensable. What we can do here is
apply variance stabilization to data before using conventional analysis methods.

Variance-stabilizing transformation,6 in brief, modifies the unit or the metric of given
data to a statistically desirable one. All given data are transformed by a common function,
which is a monotonically increasing one-to-one correspondence function. What actually
enables variance stabilization is determination of the dependence of each variance on the
average for the given data. In the case of gene-expression microarray data, based on the
above model, this dependence is a quadratic function consisting of three parameters: the
coefficient of signal variation, the noise variance, and the noise mean. This transformation
would be useful in most cases unless we were interested in these three estimators them-
selves. The superiority of this transformation compared to other alternative methods such
as the ‘started logarithm’ has been suggested.7

In this paper, we propose a new method for estimating these three parameters because
the conventional method4,5 is disturbed by outliers. In the model section, we define the
gene-expression microarray data model and summarize the general framework of variance-
stabilizing transformation. In the theory section following that, we describe the conven-
tional parameter estimation, and then propose our new method. The effectiveness of our
method is compared to that of the conventional method based on experimental data in the
validation section. Then we discuss the proposed method from another statistical point of
view.

2. Model

Here we define the stochastic model of gene-expression microarray data and form a
variance-stabilizing transformation based on this model. The datum of theith gene under
the jth condition is defined as the stochastic variable; that is, the summation of a signal with
log-normal distribution and random noiseQ with an unknown but common distribution to
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all genes and conditions,

Xi j = expZi j +Q, (1)

whereZi j is taken from a normal distribution with meanµi j and varianceσ2
i j (we use the

expression ofN(µi j ,σ2
i j )). All Zi j and Q are independent of each other. We sometimes

useX(k)
i j , which denotes thekth stochastic variable amongNi j observations, and its sample

valuex(k)
i j . Usually,Ni j is a small value, such as three or four, because of the high cost of a

microarray experiment. We assume eachσ2
i j is equal toσ2

Z. We also assume all data have
been well calibrated between each microarray chip.

We notice that every variance ofXi j can be determined using the corresponding average
of Xi j through a common quadratic functionfθθθ ,

Var[Xi j ] = fθθθ (E[Xi j ]), (2)

fθθθ (t)≡ (eσ2
Z−1)(t−µQ)2 +σ2

Q, (3)

whereµQ ≡ E[Q], σ2
Q ≡ Var[Q], andθθθ ≡ {σ2

Z,µQ,σ2
Q}, while E[•] andVar[•] denote the

average and variance, respectively. Generally, if we knowf , the function of the variance
dependence on its average, we can form the transformation functiong that stabilizes vari-
ances to1 using the first-order Taylor approximation,6

1 = Var[ g(X) ]

' Var[ g(E[X])+g′(E[X])(X−E[X]) ] (4)

= {g′(E[X])}2 f (E[X]),

g(x) =
∫ x 1√

f (t)
dt, (5)

whereg′ is the first derivative ofg.
Here we use a modifiedfθθθ so that the corresponding transformationgθθθ conforms to the

conventional log transformation under noiseless circumstances (µQ = σ2
Q = 0),

fθθθ (t)≡ σ2
Z(t−µQ)2 +σ2

Q, (6)

gθθθ (x) =
1

σZ
lnhθθθ (x), (7)

hθθθ (x)≡ 1
2

(√
(x−µQ)2 +σ2

Q/σ2
Z +x−µQ

)
, (8)

where we have usedeσ2
Z−1 ' σ2

Z. This transformation functiongθθθ is a monotonically
increasing function, hence it guarantees order preservation and one-to-one correspondence.
The functionhθθθ can be used as a noise reduction function. Now, what we need to know is
the transformation parametersθθθ .
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3. Theory

In this section, we briefly summarize the conventional estimation method and propose a
more straightforward and potentially better one. Before we get onto our main subject,

we do several definitions using sample meanMi j ≡ 1
Ni j

∑
Ni j
k=1X(k)

i j and unbiased variance

Vi j ≡ 1
Ni j−1 ∑

Ni j
k=1(X

(k)
i j −Mi j )2. We also use the transformed variableX̃(k)

i j ≡ gθθθ (X(k)
i j ), cor-

responding to sample meañMi j and unbiased variancẽVi j (with tilde). All random variables
are expressed in capital letters, while the corresponding sample values are denoted in small

letters:mi j ,vi j , x̃
(k)
i j ,m̃i j , andṽi j , respectively.

First, we describe the conventional maximum likelihood estimation. This method es-
timates the optimal transformation parameters,θ̂θθ , using all observed valuesx(k)

i j , while
unknown parametersµµµ ≡ {µi j } are included in the estimation

θ̂θθ ≡ argmax
θθθ

[
max

µµµ ∏
i, j,k

PXi j (x
(k)
i j ;θθθ ,µi j )

]
, (9)

whereP• denotes the probability density function of random variable•. AlthoughPQ is
unknown, we can approximatePXi j by assuming that the transformed variableX̃i j follows
normal distributionN(µ̃i j ,1):

PX(x) = PX̃(x̃)
∣∣∣∣
∂ x̃
∂x

∣∣∣∣'
1√

2π fθθθ (x)
exp

(
− (x̃−µ̃)2

2

)
, (10)

where we have omitted subscripts and superscripts for simplicity. Consequently, we get

θ̂θθ = argmax
θθθ

∑
i, j

[
−2ni j ṽi j −∑

k

ln fθθθ (x(k)
i j )

]
, (11)

whereni j ≡ Ni j−1
2 . This method is substantially equivalent to the conventional method4,5.

This method has a disadvantage; the likelihood ofXi j with smallσ2
i j is always greater

than that with standardσ2
Z, although we expect the likelihood with standardσ2

Z to be high-
est. This results in high variances of the transformed data (as shown in Fig. 2(c)). Moreover,
this method is unable to manage outliers using likelihood, although likelihood is a useful
criterion for judging outliers as described in the next paragraph.

Our approach is more straightforward; we directly estimate the variances of the trans-
formed data

θ̂θθ ≡ argmax
θθθ

∏
i, j

PṼi j
(ṽi j ;Ni j ,1), (12)

wherePṼi j
is the probability density function of the unbiased variance ofNi j independent

sample values from a normal distribution with varianceσ2 = 1, and is easily determined
using the gamma distribution as

PṼ(ṽ;N,σ2)≡ 1
Γ(n)

( n
σ2

)n
ṽn−1exp

( n
σ2 ṽ

)
, (13)

wheren≡ N−1
2 , while Γ is the gamma function.
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Fig. 1. Probability density functions. (a)PṼ(ṽ;N,1), (b) PŨ (ũ;N,0).

We can manage the effect of outliers (which mean extremely high variances,σ2
i j À σ2

Z,
or low variances,σ2

i j ¿ σ2
Z) by excluding the smallestp% of all the likelihoods,PṼi j

(ṽi j ),
from the estimation, where we predetermine the rate of outliersp (e.g.10 to 20%, see the
discussion for details) before the estimation. In the case of an iterative search for the opti-
mal parameters, we exclude the outliers at every iterative step by sorting allPṼi j

(ṽi j ). This
exclusion of outliers according to likelihood enables the statistically appropriate manage-
ment of outliers.

In the case ofNi j = 1, this method is also applicable; we replaceṼi j by Ṽi , which is the
unbiased variance of theith gene, andNi j by the number of conditions. A slightly higherp
may be better to use here because of the existence of differentially expressed genes.

Finally, we complete this estimation method by considering the case of smallNi j using
a technique of information normalization. Although the case of smallNi j is commonplace,
we encounter two problems with the method of Eq. (12): 1) the variances of the data trans-
formed by this method tend to be smaller than1 in the case of smallNi j , 2) this method is
not applicable whenNi j = 2 or 3 because the probability density function ofṼ (Eq. (13))
has a single peak atṽ = 0 (Fig. 1(a)).

Specifically, instead of Eq. (12), we propose the following estimation:

θ̂θθ ≡ argmax
θθθ

∏
i, j

PŨi j
(ũi j ;Ni j ,0), (14)

PŨ (ũ;N,ρ)≡ nn−1/2

Γ(n)
exp

(
n

{
ũ−ρ√

n
−exp

ũ−ρ√
n

})
. (15)

Here we useρ instead ofσ2, and it is exactly determined by transformingσ2 so that the
Fisher information ofρ is always equal to1 (I[ρ] = 1);

ρ ≡
∫ √

I[σ2]dσ2 =
√

nlnσ2, (16)

I[σ2]≡ E

[{
∂

∂σ2 lnPṼ(Ṽ;N,σ2)
}2

]
=

n
σ4 . (17)

This information normalization is somewhat analogous to variance stabilization (compare
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Eqs. (5) and (16)) because the variance and Fisher information are reciprocal values at the
Craḿer-Rao bound. The maximum likelihood estimatorŨ of this parameterρ is easily
determined as

Ũ =
√

nlnṼ. (18)

The probability density function of̃U is given by Eq. (15) and shown in Fig. 1(b); the
distribution always has a peak atũ = 0 (corresponding tõv = 1) regardless ofN. This in-
formation normalization clearly improves the performance of variance stabilization. (Note
that the maximum likelihood estimation is affected by the transformation of the applied
stochastic variable(s) –̃Vi j in this case – although it shows invariance against the transfor-
mation of parameters. Also note that we have definedṼ as an unbiased estimator andŨ as
the maximum likelihood estimator for simplicity. Either estimator is applicable forṼ and
Ũ ; it does not affect the overall estimation.)

Equation (14) can be simplified as follows.

θ̂θθ = argmax
θθθ

∑
i, j

Li j (θθθ), (19)

Li j (θθθ)≡ ln
n

ni j−1/2
i j

Γ(ni j )
+ni j (ln ṽi j − ṽi j ). (20)

Moreover, in the case where allNi j are the same value, a simpler form,Li j (θθθ)≡ ln ṽi j − ṽi j ,
is available. To exclude outliers, we ignore the smallestp% of Li j (θθθ).

4. Validation

We validated the proposed estimation using several experimental datasets. Here we show
results from Affymetrix GeneChip U74A and Microarray Suite 5.0 software (Hubbell et
al, 2002); the number of genes (or ESTs) was 12422, there were three conditions, and four
observations were made for each condition (Ni j = 4). Before applying the transformation,
we calibrated the data of each chip through multiplication so that the median value of every
chip would be the same value.

Figure 2 shows scatter diagrams of the variance against the average. The data before
transformation shows a strong dependence between the variances and the averages (Fig.
2(a)). This dependence is explained by the gene-expression microarray data model we
have described; i.e., a quadratic relationship (gray line). This dependence remains even
after the log-transformation (Fig. 2(b)), where the gray line denotes the moving average of
variances.

The results from the conventional transformation using Eq. (11) (Fig. 2(c)) were not
good; the moving average of the variances (gray line) clearly shows variance dependence
on the average, and tends to be higher than1, which may have been caused by outliers with
small variances. On the other hand, the results from the proposed method (Fig. 2(d)) were
good; the dependence of the variance on the average was almost completely eliminated,
except for a small amount of the samples with small averages. Artificially generated ideal
results are shown in Fig. 2(e) for reference, and these are roughly comparable with the
results of the proposed transformation.
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Fig. 2. Scatter diagrams of the variance against the average of each gene under each condition. (a) Raw data (after
calibration). The gray line denotes quadratic functionfθ̃θθ determined by the proposed method. (b) Log-transformed
data (̃x = lnx). (c) Variance-stabilized data using the conventional method. (d) Variance-stabilized data using the
proposed method (the rate of outliersp was set to10%). (e) One of the ideal results, where the variancesṽi j were
artificially generated from a normal distribution with unit variance. The averagesm̃i j are exactly the same as those
in (d). The gray lines in (b) - (e) each denote a moving average of the variances on a logarithmic scale.

5. Discussion

Information normalization provides several benefits. For example, from the viewpoint of
Bayesian statistics, a uniform prior distribution of a normalized parameter will always sat-
isfy Jeffrey’s prior. In gradient descent learning, conventional gradient descent is always
equivalent to natural gradient descent,9 which is necessary to achieve Fisher efficiency.
These benefits of information normalization may allow maximum likelihood estimation to
produce appropriate results. However, information normalization of more than one param-
eter is not always possible; this requires elimination of Riemann-Christoffel curvature.

The rate of outliers,p, is the only parameter that we need to predetermine in the pro-
posed method. The proposed method is more useful than one which cannot deal with out-
liers, but how to determine this outlier rate is a difficult problem. We empirically recom-
mend setting this rate to a small but non-zero value (10to 20%) to get better transformation
parameters, because microarray data usually include a small number of outliers. Fortu-
nately, the proposed method is rather robust and not greatly affected by this outlier rate. Of
course, there should be better methods to determinep; for example, we can choose optimal
p which gives the nearest empirical distribution to the model distribution in the sense of the
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Kullback-Leibler divergence. We can also determinep as the rate of ESTs, or one based on
it. We hope to develop these ideas more fully in our future work.

Further improvement of variance stabilization might be possible under a new gene-
expression microarray data model. We emphasize that our framework is fairly general and
may be applicable for a more elaborate relationshipf , because we have not limited the
class off so far.

6. Conclusion

We have shown that the conventional method of estimating transformation parameters,
which was proposed by Huber et al, has a disadvantage with respect to the management
of outliers. We have developed a new estimation method that is able to exclude outliers
efficiently even in the case of small sample size. The greater effectiveness of the proposed
method, in comparison with the conventional method, was suggested through a demonstra-
tion based on experimental data.
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