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Adaptive natural gradient descent (ANGD) realizes natural gradient descent (NGD) without needing to know
the input distribution of learning data and reduces the calculation cost from a cubic order to a square order.
However, no performance analysis of ANGD has been done. We have developed a statistical-mechanical theory
of the simplified version of ANGDPresent address: ft commPresent address: Present address: Present address:
Present address: Present address: Present address: ittee machines in on-line learning; this method provides de-
terministic learning dynamics expressed through a few order parameters, even though ANGD intrinsically holds
a large approximated Fisher information matrix. Numerical results obtained using this theory were consistent
with those of a simulation, with respect not only to the learning curve but also to the learning failure. Utilizing
this method, we numerically evaluated ANGBieiency and found that ANGD generally performs as well as
NGD. We also revealed the key conditioffiexting the learning plateau in ANGD.

PACS numbers: 02.50.-r, 05.20.-y, 07.05.Mh

I. INTRODUCTION fected by the correlation between the teacher weight vectors
[3]. From a general view, one of the greatest advantages of

Feed-forward multilayer perceptrons are known to have dif NGD could be its independence of the parameterization of

ficulty determining their parameters using a set of training? 91ven network model. Another advantage may be that the
data. This is because of the non-linearity of their activa_Premulttiplier of the gradient of the error — the inverse of the

tion functions, which prevents the use of analytical estimatior{:iSher informatiqn matri>_< —is not de_pende_n_t on Ie_ar_ning data
methods; e.g., maximum likelihood estimation. An alterna-°r the error function and is necessarily positive definite. There

tive approach is to use the stochastic gradient descent, whi@€ similar met_ho_ds that use the inverse of the Hessian matrix
introduces an error function for a given learning sample in S the premultiplier. However, these methods may be unsta-

supervised learning framework and adjusts the network p nle, because_theirpremultipli_er intriln_sically.dgpends on learn-
rameters step by step to reduce the error. ing data and is not necessarily positive definite [7].

Steepest gradient descent (SGD), equivalent to back- Adaptive natural gradient descent (ANGD) [8, 9] is an at-

propagation, is a simple and useful gradient descent method active f_orm Of.NC.;D V.Vith respect to both the calculation cost
but it sufers from a learning plateau, which is a long learn-2nd the input distribution of training data. ANGD reduces the
ing period with poor error reduction. This learning plateau iScalculatlon cost from a cubic order of the number of network

caused by the permutation symmetry (i.e., an exchange of qwRArameters to a square order, and does_ not need to knaw the
hidden units in the same layer has nféeet on the network input distribution. Moreover, ANGD retains some of the ad-

output) because it creates a saddle structure in the generaliz@m""ge.S of NGD.; €g.Its approxma.t(.ad Inverse of the Fisher
tion error function [1, 2]. Moreover, the plateau period is pro_|nformat|on matrix is necessarily positive definite. However,

longed when the weight vectors of hidden units in the teachel© previous research has quantified the leaming performance

network are correlated [3]. of ANGD with respect to its practical applicability.

In contrast, previous works have shown that natural gradi- l.]',!” ;hls Papet, :V:N%/gl}'ate tr;te Iearnlg@@encthf a S|mS- ft
ent descent (NGD) [4, 5] has almost optimal learning pen‘orpl \ed version o or soft committee machines. (So

mance (Fisher ficiency). NGD does not have any plateau fr%f]‘g'tfﬁ G”E)ai‘;hi':]‘gfngggﬁ'sggbi'ggg'?grtxoli'gﬁ;;r%ﬁep'

if the learning rate is set low enough [6]. NGD is also unaf- o . Y€ . hing.
On-line learning [7, 10] facilitates analysis because it uses

each learning sample only once, so the network state is in-

dependent of each learning sample. We employed statistical-
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and ANGD), and an adaptive estimation of the inverse of theavhile Gis an adaptively approximated matrix Gf obtained
Fisher information matrix for ANGD. We use a soft commit- by ANGD. The update rule o6& is given asG := G + AG,
tee machine wittM hidden units as a teacher network and onewhere

with K hidden units as a student network: AG = ﬁ [_é N [Vf][Vf]T], (10)
M
fe(é) = Zg(Blg), (1) while 0 < & < 1is an update rate. ANGD does not use
Py the input distributionp(&¢), but shares each input samg@e

K with the update rule ofl, and approximate& step by step.

fi(¢) = Zg(\]lg), (2) Realistically, rather than Eq. (10), ANGD adopts an ex-
k=1 actly equivalent rule using the Sherman-Morrison formula:
G1:=G1+AG?, where

wheree' denotes the transposBy € RN and Ji € RN are B Ay TAL

column vectors that represent tkiéhh weight vectors foiN- AG 1= N _[g1_ G [Vf][yf] G R

dimensional inpug¢ € RN, andg denotes the activation func- 1-£ 1+ VTG VI]-1)

tion. We define the probability density function for each net-

work for NGD and ANGD. The function for the teacher net-

work is defined with inpu§ and output as

Equation (11) fers the great advantage that we can omit the
expensive matrix inversioro({N K}%)) and achieve lower cal-
culation cosO({NK}?). Here,G ! is always positive definite
_ _ and symmetric if the initial value is positive definite and sym-

Pe(é.0) = PE)OC ~ Tel)). ® metric. For an initial value, we chooséor simplicity. ANGD
where p(¢) is the input distribution and is the Dirac delta is always applicable if SGD is applicable, becaldeis re-
function. The probability density function for the student net-quired even in the case of SGD, whereas NGD cannot always
work is defined with inpug and output’ using normal dis- be applied when the input distribution is unknown.
tribution N'(f3(£), 1): Whenp < 1, Eq. (11) can be reduced to a simple form:

pE.0) = PO exp(-Lr- TR @ A&7 = Q6= avTET]. ()

This approximation was introduced by Amari et al [8]. In
this paper, we investigate this simplified version of ANGD in
detail under the assumption of smallWe also elucidate what
(rappens when this assumption is violated.

The student distribution is modified incrementally by adjust-
ing its parameter vectar=[J], JJ, .., J%]" € R¥N to approx-
imate the teacher distribution.

The error of student output from teacher output is define

as
v . THEORETICAL RESULTS
e1(é) = 3{& 9 (5)
where In this section, we show the order parameter expression of
the system dynamics in ANGD, where we use both the usual
€3(8) = 1,(6)—fs(8). (6)  and newly introduced order parameters. With respect to SGD

o ) ] and NGD, the usual order parameters af@icent to explain
The generalization error is also defined as the expected errofhe system state because the system has rotation invariance un-
der the assumption of Gaussian inpgit{ N (0, 1)); i.e., the

eg(J) = (& ('f))f ’ @ system is equivalent to one with rotated weight vecthr$;.
where(s), denotes the expectation efvith respect to a ran- The usual order parameters can also describe the Fisher in-
dom varieolble:. formation matrixG andG1. We need new order parameters
The parameter update rule in gradient descent can be wrifor ANGD, though, to descrlpelthe approximated inverse of
ten, in general, ag := J + AJ, where the Fisher information matris™. To make the present pa-
per self-contained, we first briefly summarize the derivation
_.n __n. of the usual order parameter equations of the soft committee
AJ=-—=MYV =—— MV £, 8 . -
N beal®) N © ®) machines for SGD [1, 2] and NGD [5, 6]. Then, we explain

. . the new order parameter expression for ANGD.
while M € RNKNK "I > 0 is a scaled update rafé denotes P P

the gradient, an& f € RNX denotesv; f;(£). We can imple-
ment SGD by settindl = | (unit matrix), NGD by setting A. Generalization error
M = G [4], and ANGD by settingV = G™*[8, 9]. TheG

denotes the Fisher information matrix of parameter vedtor

defined as
G =([Va Inps €. NV Inps(€.07),.,, Q=[Qylijerk Q=3I
i R =[Rijli-1,.k.j=1..m> Rj = J{ Bj, (13)

- <[Vf][Vf]T>§, 9) T = [Tijlij=1..m> Tij = B?Bj-

The usual order parameters are the inner products among
all weight vectors:



Here, Q € RX*K means the inner products matrix for the
student weight vectors, whil® € R¥*M means the matrix
containing the inner products between the student and teacher
weight vectors. Th& and R are updated according to the
updating ofJ. Here, T € RM*M means the inner products
among the teacher weight vectors; this is fixed. The square
length of each input, and the inner products between the input

and the weight vectors are temporarily used to describe the |dRy 1|
micro dynamics: [EEA]
— T
X = ng’ FIG. 1: Intuitive schema of the learning dynamics at the large limit
X = [Xliz1.k> X = i &, (14)  of N. Inthe case oK = M = 1, J; mainly moves in the current
y=[ylizL.m, ¥i = B, ¢. subspace made hy; andB; according to the gradient of the error,

but necessarily moves out of this subspace into the null space, or the
Here, y € R stochastically converges 1§ (y 2 N) at the  complementary subspace,bfandB,, because the small fluctuation
large limit of N. Also, x € RK andy € RM are random vectors of J; in each dimension is summed up resulting in the non-zero term
dependent on inpug. The distribution ofz = [xT,y"]T ¢  #u1inEa- (25).
RK*M is determined using the order parameters: N(0, C)
where

where

C= [F?T ﬂ € RIKMIx(M) (15)

AS; = [AJ]TJ; = —%&xj,

We can then substitute the order parameters and these ran- 2

dom variables for allN-dimensional vectors;, J;, andé. Agij = [AJ]TAJ; = ”_X5i(5]. (21)
The number of order parameters igfstiently small because N2

it does not depend oN, and this facilitates system analysis. jare and hereafter, we uSe= [Si]iic1_«k € R¥K and¢ =
For example, the generalization error can be expressed as [#ij];.jo1..k € R for conveniencj:e’.lf

KM 2 Next, we introduce timer, and specify that time/N is con-
&(C) = %fdzp(z) {Z Ckg(zk)} i (16) sumed by each update. At the large !imitl‘cbfthe dynamiqs_ _
= of the order parameters become continuous and deterministic.
o . For example, the value &; over an infinitesimal time inter-
wherecis 1if k < K or -1 if k > K. Here and hereafter, we 5| (dy) after current timer is not a random variable, although
assume(x) = erf(x/ V2), where erf§) = \/% b dt et is the eachAR; is a random variable.
conventional error function. The generalization error can then

) . . Nda-1
be rewritten as an analytical function [1], R( i) _ R@Jf im AR.(f”“ N)
K+M J ] Nowo ]
&(C) = Zc-c- arcsin Ci (17) i
] i 1 . (03
S VCi+D(Cy; +1) =R~ p(sy;). da 22)

Therefore, the time derivation &; is

B. Steepest Gradient Descent o
Ry
. — =-n (o), (23)
The dynamics of the order parameters for SGD can be ex- da z
pressed using the order parameters themselves [1, 2]. Froffhs expectation with respect tcan be solved analytically

Eq. (8), the update rule for parameters [1]. The dynamics ofY; can be determined similarly, and we

A =-Tag, (18) 9¢t
inj 3 dSij dei d¢ij
where W " e e (24)
6 = [6ili-1..k. 6i = &(DY' (%), (19)  where
while ¢’ is the derivative ofy. Thus, the update rules of the ds;;
order parameters can be written as o " <5i Xj>z’
n ij
AR =[AJi]"Bj = —Néiyj, e Uk <5i5i>z' (25)
AQj =[Ji +AJ]T[I; +AJj] - 3] The order parameter dynamics suggest that, at the large

= ASjj+ASji + Agyj, (20) limit of N, J; necessarily moves out of the current direct sum
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subspace made by all the weight vectds.., Jx, B1,..,By,  space of the student weight vectovsg RNV which sat-
although it mainly moves toward the subspace made bysfiesVTV =1andJ’"V =0, as

Bi,..,Bm (Fig. 1). The direction of this orthogonal move-

ment to that subspace is always chosen randomly, while the

time derivative of the square distance of this movement is Gij = Al +[J',V]
represented a%"% in Eq. (24). This orthogonal movement

also appegrs in NGD and ANGD a§ t%’?;}irm mcIuQed N Where Aj € RAy € RKXK’A{]_ c RKX{N—K},Ai/J_/ c
the dynamics of;;, and, moreover, in th&™* dynamics for RINKIXK and A/ e RIMKIXINKI (10 be exactd;j is verbose).

Aij Ai’j} T
’” 117 ‘]/9V s 26
qij «ij [ ] ( )

ANGD. We can then rewrite Eq. (26) as,
C. Natural Gradient Descent Gij = 4ijl + J'Aj T + Ej, (27)
0 Aj
- 4 ] ’ T

The dynamics for NGD can also be expressed through the Bj=[J.V] [Ai’j’ Ai’]f’ [3% VT, (28)
order parameters. In this subsection, we first determine the
Fisher information matrix, and its inverseG, by using whereE:: ¢ RN<N
only Q. Then we derive the motion equations of the order 'l ' )
parameters. We next proveE;; = 0; in other words,1;; and A;; are

Generally, for anyG;; € RKXK the , j) block of G, can suficient parameters to expreGs By multiplying the identity
be expressed with both the student weight vectdrs,= matrix, [J’, V] [[J’,V]T[.J’,V]]_l[.J’,V]T,we can rewrites;;

[J1,.., k] € RN*K and all the orthonormal bases of the null as

Gij = ([VHILVHIT),

= [V (197 VI VI L VI (ORI T, 137 V13 VT VI 0T

-1 T T 1
SEAY]A ?](g’(m—)g’(xj)[xx " ]> [Qo ?][J’,VF
L 3

vx wl

‘A1 T 1
S| S [T Te T | N S [

e [@HE0g ()xxT) Q7 0
B 0 (g0 (), |

= (g'(0)g (), VT + J’[Q’l (g0 05)xxT), Q*]J’T
= (g 0g ), 1+ I|QH I (g CxxT), Q= (g () (x)), 3, (29)

}[J’,V]T

whereVf, = g'(x)& whilev = VT¢ ~ N(O,1). We used Next, we determin&™! using a similar style to Eq. (27):
(g’(xi)g’(xj)va>§ = (g9 (x)x), (V'), =0, and<WT>§ =

-1 _ g '@ 1T
I. Thus, we can provE;; = 0 by letting [C7Tij =yl + 70,07, (32)

! whereg;; € R and@;; € R*K correspond to; and Ajj,
, (30)  respectively. If we temporarily adopt normalized expressions
of Aj; and®;;, defined as

/ / 21Qi+1 ij
1= (@009 ), == [ %)
Aij = QHg (g (x)xxT), Q7 - 4;Q o
Qi+l Q |* Aij = Q2A;;Q? + 451, (33)
o ota| el (D & = Q1o +41. (34)

where| e | denotes a determinant, whig € R is a unit  matrix multiplication will be simplified; e.g.,

vector whoseth element is 1. Tha;; andA;; are expressed - .
with certainty byQ. GijGu = [/lij[l ~UQIUT] + UQ 24, ‘EUT]

= -2lij[e, gj]




X [/lkl[l —1 I(Q_ll J ] + U() %AkIQ %I J ] WhGTER.j denotes thq-th Column OfR, a | [ ]
‘/lij/lkI[I‘UQ 1U ]+UQ %AijAk|Q %ll .

I . L _ _ D. Dynamics ofG* for ANGD
Utilizing this normalization, we can easily obtain

0=11 O=A" (36) In this subsection, we derive the dynamics of the approxi-
mated inverse of the Fisher information ma@x! (from here
whered = [Ai]i j-1,.k andé = [6;j]i j-1. .k areR*"K symmet-  on, for simplicity we writeH instead 0fG™1) in the simplified _
fic matrices, whileA = [Ajjlij-1. k. A = [Ajj]ijo1.k,© =  VErsion of ANGD. Unlike NGD, there are three types of dif-
ficulty in ANGD. 1) The dependence betweérandH, be-
cause ANGD has two dynamics dfandH and they share
each input. We introduce an approximatiotw(o £ rule) to
negate this dependence. 2) Higher-order self-correlations of
H, which originate from the update rule Hfitself. We negate
K these infinite correlations by exploiting thex 1 assumption
AJ =-1 Z5kGﬂ<lf~ (37)  of the simplified ANGD, because-order self-correlation is
N & scaled byO(p"). 3) The high complexity oH; G andG™

) . o are stfficiently characterized by the subspace of the student
Hence, we obtain the time derivatives of the order parametefgeight vectors, whereald is not. This complexity will be

[@i]i.j=1. .k, and® = [@;]; j-1..k areRK*K* symmetric ma-
trices.

Finally, we obtain the order parameter dynamics for NGD.
In NGD, the rule for updating is given by

dR: K First, we introducewo ¢ rule. From Egs. (8) and (11), the
—U _,72 [gik <5ka>2 n <6kXT>z®?‘—< R.J-], value of J and H for an infinitesimal time period () after
k=1

de current timex are
- ZK:[Q <6 X'> +<5 XT> 0;Q ] Ndo-1
de ~ ’7k=l ik (OkXj ), k2] ik | Jlewd) _ 3(@ Z AJD
=0
d¢lj 2 y ” Nda-1
o~ ' . @ n A T, T T
dor n K;lak <6k6I>29I]a = J( ) _ N Z} EJ(r)(f( ))H( )Vf((r))’ (39)
=
a4 dv  do T do 38
da da * da * da’ (38)
|
Nde-1
H((Hda) — H(a) + AH(T)
2,
Nde-1
= H@® 4 Z 0 [H(T) _ H(T)[Vf((.rT))][vf((:))]TH(T)]
p=0
Ndo-1
— {1+p/}NdaH(a)_ Z {1+P/}Ndw_l_#,0/H(T)[Vf((_s)][Vf((TT))]TH(T)’ (40)
p=0

: r — pIN Nda-1
wheren andp are O(1) with respect taN, p’ = TN and ~ Z (L N O FOHE), (1)
7= a+u/N, while Vi) denotesy; f;(£)],_ 0. These two 4

equations show that bothandH include a common random
vector: V(7). ThereforeJ andH become dependent on each
other. To negate this dependence, we introduce a new updajgere ™ = p,[vf((r))][vf(r)]T_ Thistwo & rule will be vali-

rule — we draw twe independently, one for thé update and  gated in Section V.

the other for theH update in each learning stefwf & rule) —

so that this dependence disappears. Undetwiog rule, we Next, we negate the higher-order self-correlationl oiVe
can fixJ during dv, and reduce Eq. (40) to notice that this Eq. (41) is still elicult to solve, because it

includes highly self-correlated terms with respect to the old
H (@) = (14 p’)Nde (@) random matrixF™), (@ < v < 7). For example, the most
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correlated term is to the corresponding teacher vectors. To deal with this move-
. , ment, we use not only the student weight vectors but also the
HOF@OHOFEDHEOF@OR@ORER (42)  teacher weight vectors to expreds althoughG andG are

) ) ) suficiently expressed by only the current student weight vec-
However, we can ignore these terms mcludmgrden:r self-  tors. 2) Escape from the subspace made by all the weight
correlation ( > 2), because they are at moS(p") and  yectors. The direction of this movement is random, although

small enough under the assumptionpoi 1 for the simpli- 15 speed is deterministic as specified by tlketerm. The
fied ANGD. Therefore, we sum up only ti@p°) andO(')  order parameter expressions of SGD and NGD do nfiesu
terms: from this randomness because they discard it by exploiting
Nde-1 the rotation invariance of the system. In ANGD, however,
H@da) 14 5 yNdapy(@) 4 Z {1+p’ Ndotu this randomness upsets the order parameter expressidn of

it produces a hysteresis componentbbr the residual fluc-
tuating term E as introduced below) wheHhl is expressed
through order parameters. This fluctuation term is negligible
at the large limit ofN, but its square is not. Here, we realis-
tically consider theH dynamics by taking the second powers
of this fluctuation term into account, and obtain dfeetive
order parameter expressionidf This theoretical result will
be numerically validated in the next section.

First, we expres$l in a similar manner t& in Eq. (27) as

p#=0

X[{1+p P HO|FO[(1+p P HO]. (43)
At the large limit ofN, Eq. (43) becomes
HE) = @@ [H® 4+ (1-e¥HOGH®],  (44)
where we use, F — G (see Appendix A for further dis-

cussion about the convergence lef. Then, we obtain the
dynamics ofH:

dH . Hdw _ 4@ iy = et +[UV] [g:j 3” SO
@zdlyljo dor = wijl +UQ;UT + Eyj, (49)
=p[H - HGH]. (45) Eij =[U, V] [ 0 i/i [U V]T (50)

1] = s QI/J/ Qll]// s ’

We also obtain the usual order parameter dynamics. As the

update equation of each for ANGD is and provek;; is negligible. Note that we use not only the stu-

K dent weight vectors, but also the teacher weight vectors; i.e.,
AJj = -1 Z5k|.|ik§, @@6) WweuseU = [Jy,., Ik, By, .., Bu] € RN“M instead of)’ =
N i1 [J1,..,Ik]. This is because the student vectors move toward
_ the corresponding teacher vectors, adolds the compo-
we can easily get nent made from the old student vectors. Hafe RN*(NK-M)
is re-defined as the orthonormal bases of the null space of
dr; K SETHTB. U rather thanJ’, which satisfiesV™V = | andUTV = 0.
do _”Z< k6 Hik J>§’ Here, wij € R and @;; € RIKMXKM gre the candidates
Kt for the new order parameters. Als®;; € R{KMIXINAMY
B = (e HL) itces, ASH  Thiie s is @ symmetrs maum:
= . = ijlij=1..k ymmetric matrix,
Aoy 2 & o = [wijlij=1.k Q = [Qij]ij=1.k, andQ"” = [Q']; jo1, k
290 _ Z <5k5|§T HJ(H,'|§> , are also symmetric matrices, whife’ = [Qi’j]i,jzlmK and
de N kiI=1 ¢ Q' = [Qi'j']i,j:lMK are symmetric with respect to each other.
dQ; dSj; dS; dg; Next, we find appropriate dyna_mics of
i A (47)  »,Q,,Q", andQ” that satisfy the dynamics ofH

given by Eq. (45). For convenience, we consider an
These order parameter dynamics still inclidielimensional  infinitesimal change oH;; from Eq. (45),
vectors andN x N matrices, but we obtain the order parameter
dynamics expressed by the order parameters themselves in the dHij = p[H — HGH];;d (51)
next subsection.
By substituting Eq. (48) foH, we easily obtain the decom-
A posed form of &;; as
E. Order parameter representation for H = G
dHy =yl + UVl [N T v 52
In this subsection, we extract the new order parameters i =il +U, V] o oy [U. VI, (52)
from H. To characterized, we should consider the history
of J, which includes two types of movement. 1) Approachwhere



Yij = p[w - w/lw]ijda, (53)
Lij = pC 2 [2 - HAQ - & + &30 - ¥AY"| C2d, (54)
I} = pC 2 [ - QAY - ¥i0 - AQ” | de, (55)
Li=p [2-9A0-610" - @3] Cida, (56)
l-\IIJn =p [Q//I _ ﬁ//&le _ &):IQ”’ _ Q,N;l(:) _ Q/N;lgnl]ij dG,’, (57)
\
whereQ = [ = C2QiC? + wijl]ijo1k, & = [fzi’j = Here,Lj;, L, L}, andL;" are easily determined by calculat-

CQ]jor.k, aNdQ” = [Q) = @;CE]i ok are intro- Y
duced to simplify multiplications, whiled = [A;jl]ij-1.k
and® = [wijl];j-1.k are matrices extended to an appropri-

ate size; e.g., the same size as thafdobr . TheA is Lij Lj _
re-defined a%& (A = C%[Aij O]C% w21 [LI,J, Lf,‘_,,] = [W'w] 1WT[dHij_{da)ij}|]
B = Lij = 0 0 ij11i,j=1,.K- ij ij
The infinitesimal change of Eq. (48) is given by XW[WTW] L. (60)

Qij +inj Qi/j +in/]- ]WT

dHij = tdail + W o L dor @77 +dary

) Note thatW[WTW]*WT is an identity matrix. By erasing
Qi € U, V], (58) small terms such a3(d?), we obtain the following equation,

_[U’V] ’” 2
Qij Qij

whereW = [U+dU,V +dV] € RVN, Note that the con- )

ventional total dfferential is not applicable becauseis not dH; = 11 +[U,V] ['—ij Lij ][U Vi (61)
differentiable. We also decompose this matrix\Wyrather e B LA R

than U, V] becausdJ andV are also moving,

L L/
dHjj = Ijjl + W LI,', L',',,}WT. (59)  where
ij ij
|
|ij = da)ij, (62)
Lij = d@;j + C"{dC-dO]Q;; + @;;[dC-dO]"C™* - CH{dU] "V - @/ V'[dU]C ™, (63)
Lj; = dQ;; + C"'[dC-dO]Q; - @;VT[dV] - CHdU]"Ve - @;;UT[dV], (64)
L = deyf - [dV]TVQ) + Qf[dC-dO]"C™' - [dV]TUQ; - 'VT[dU]C™, (65)
L = deyy’ - [dV]TVe - Q'VT[dV] - [dv]TugQ] - QU [av]. (66)
where we used du]-C= [;’ST d(?], and ® = [dU]"U = [dos dgl-
To realize AH of Eq. (52) through Eqg. (61) under the given
wTw = |€+dC o] 67) a. (52) L”_gu q (r”)n g
0o I U,V,dU, and &, Ii; = 7 and[,_,_, Lf,’_,,] - [r_,_, r_»,] should be
1] 1 ] 1
WTTU. VT = C+dO [dU]'V 68 satisfied. We then easily obtain an appropriate infinitesimal
[U.V]= [dV]TU 1+[dV]TV | (68) change ofw, Q,Q’, Q”, andQ"” as,

whereC = UTU = | § | € RIKMIMKHI, 6C = [U+dU][U+



dwij = plw — wAw];;de,

dQj = pC_% [f) —OAD — &+ &N — ﬁ/iﬁu] C_%da

ij

-C'[dC-dO]Q;j - @;[dC—-dO]"C™* + CHdU] "Vl + Q] VT[dU]C,

dQ; = pC# | - QAY - Qd6 - ﬁ'ig”’]ij da
-C'[dC-dO]; + Q;VT[dV]

+Cldul"va

ij

Aoy =p [@7-0"AQ -0 - Q7 IAQ"| C i de
[AVITUQ;j + QVT[dUIC™,
w@f =p [@7-QAY - ol - Q"o - QAR do
[dV]TUL; +Q/UT[dV].

]
+  [dv]'VeQ - f[dC-dO]"Ct +

+  [AV]'Ve + QVT[dV] +

nr

+ QijUT[dV],

(69)

(70)

(71)

(72)

(73)

We notice that, with respect tdl, the orders of each vectors are completely randor([,l - UC‘1UT]dU>§ =0or

element of the matrices, Q,Q’, Q”, andQ”’ are at most
O(1), 0(2), O(%), O(%), andO(3) (see Appendix B). This
suggests thdt is negligible at the large limit dl. Actually, if

we explicitly assume that the escape directions of the studef€ro: and we obtain

equivalently(VTdU>§ = 0 or (dV), = 0, the time integrations
of the terms includindJ"dV,VTdU, andV'dV converge to

dwij
d—" = plw — wAw]jj, (74)
(07
T O 07 P~ IR BRY -V ) g, @ @R g
G =pC2 [Q—QAQ—w+w/lw—Q AQ ]ijC 2-C [“o ] 6] Qjj - Qij[ o & d]C , (75)
daQy. T
] _ 2T A T~ A YO —ldT? % d—s ’
L =pCH [ -0AY -@i6-8007] -C [d 8 Ela, (76)
del/ _ fzu ﬁ//[&ﬁ N;lﬁ” Q,”;iﬁ" C—% Q' §+%¢ % C—l 77
ds-erN _ [ MRG0 "y~ YO
—L=p  [|Q-QAY-6IQ"-Q" A" . (78)
da ij
\
These equations guarantee ti&it Q”, andQ’”’ are always In a similar way as above, we let
zero at the large limit oN, because the initial zero values of
Qf, Q, andQ’ are preserved. Consequently, we adept ) Yij Y], T
andQ as the new order parameters, which successfully ex- [ETij =[U,V] A V. VI, (79)
pressH. where
Next, we consider theHGH term in Eq. (51) because
a small fluctuation ofE might become significant in this , K 'O Y
second-order of thed term.g Specifically, 8ve evaluate the ﬁ',‘, ‘Yr,i),] = Z [3}5‘%‘5} ar Cg,ikgg,,,g,,,}. (80)
ij Lij vl e el SR el TR b

square of the fluctuation teri (to be exactw andQ also
fluctuate, but their fluctuations do not become significant be-

cause these matrices argfstiently small compared with). ~ Then, an infinitesimal change &? is

d[E?);j = [[E + dE]? - Ez]ij



K +de [0y +dey] [ +de [y +dey] .
— W 1 I I I W
kZ_; Q7 +dQ IO, +dey] [ +dQyI[C+dCII, +de |+ [0y +day 12y +dey]
Q/ Q// Ql Q/// T
- Z[U V] QN'Q// Q//CQ/ +Q///Q///:| [U7V] . (81)
\

Substituting Eqgs. (70)-(73) for®, dQ”, and A2/, and eras- - - -
ing small terms, we obtain an appropriate infinitesimal change Z[‘”ik| +UQiU J[wigl + U U] + UY;U
of iy, (7}, {7, and;y". Briefly, the point is that [ |d€2, k=1 ,
is not negligible bunik[d{f 8]ij, becaus&T[dV][dV]TU = = [H75, 87)

[d¢ 0] (see Appendix B). Actually, we obtain, at the large limit ofN.

LTaR, R, AR A A s This " is useful for estimating the matrice®” and Q”,
dij = pC [29 Q7 - QAQ'Q" - Q'QTAQ which are required for both th®'[A& + @A]Q” term in Eq.
_ fz’[im&)i]ﬁ”],, Cida (82) and theQ’AQ” term in Eq. (75). Intrinsically, an exact
i restoration of)’ andQ” usingY is impossible, because the
number of elements @@’ andQ” is O(N), while that ofY is
+ Z[Fi,kgl/(’j C'[dC-dOjQ; @) + @ T, O(1). Hence, we substitute one of the probable candidates of
k=1 Qf; andQi for the trueQ’ andQ”; i.e., we use

- Qi/ksz/k,j[dc_do]TC71 + !Zik[“(‘f g]ﬂkj].
’ 17 1
(82) Q= jST = % [[ \/'r]ij’...,[\/'r]ij]’ (88)

We notice that each element W, is initially zero, and be- Wheren = 50! was assumed to be a natural number. This

- Eq. (88) certainly satisfies the necessary condition given by
comesO(1), becaus€|g ¢, is O(1), whereas the other 1y Satistl .

: Eqg. (83). Substituting this Eq. (88) for Eq. (82), bt
terms, ¥, (f, andY(", are considered to be always zero at d- (83). Substituting this Eq. (88) for Eq. (82), we obtain

the large limit ofN.
We then let the following positive definite and symmetric dij =p [c*% [2? _OAY - T&fz]__ C 3
1]

matrix
- [V¥la+al) «/Tr]”] da
-CdC-dO]Tj; - ij[dC-dO]'C™?

YT=00"¢ RK[K+M}XK{K+M]’ (83)

be another new order parameter, whire= [Yijjlij-1, k. In K
short, we can write + Z Qik[d('f g]gkj’ (89)
Ej -0, (84) k=
21 _uysuT ~ -
[E°];j -U;U° — 0, (85) whereY = [Yjj = C%Tijc%]i,jzle. In a similar manner, we
can substitute Eq. (88) for Eq. (75).
Finally, we obtain the new order parameter dynamics

or, equivalently,

wijl +UQ;UT - Hyj, (86)  through Egs. (74), (75), and (89) as
J

d -
< = plo-wluly, (90)

(04
dQ; i - .
&4 :p[c—% [Q—QAQ—(D+5)/{(D]” cz- [\/Tm/w_r]‘.]
do ij

o g]Tg” o,[E5% §lc (91)

dij 1o AR SR AT AL T
= zp[C H2T - BAT - TAQ), ¢ - [ViT1a+6) «/T]ij]

(04

ds , d¢ dR ds | d  drR

-C |:do d ]‘r” le[dy dor E]C—
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K
dg
+ 2§ e (%2)
k=1

Intuitively, in Egs. (90)-(92), the terms includipgeorrespond  and the system failed to learn the teacher outputs with jarge

to the dynamics oH, whereas the terms includi 5831 %5 (solid line in Fig. 4(a)). Figure 4(b) shows the borderline be-
L . tween this learning failure and the success areas with respect
keep the component &f constant which is still expressible by the and p conditions. Roughly, the failure area corre-

d
Q or Y under the movement ¢f. The term includin f@ g] sponded t > 0.05. Our numerical solution of the theory

means the component &f which is no longer expressible by syccessfully reproduced these Iearn[ng fa}ilurgs in the simu]a-
Q under the escape movementbinto the null space ob. tion, which are _shown as the _dotteql lines in Fig. 4(a) and F_|g.
The dynamics of the usual order parameters for ANGDA(b). (We considered a Iearn_mg fallure to have o.ccurred with
given by Eq. (47) can be rewritten using the new order pa_the Fheory \{vhen thfa corre_le;tmn matrix of the weight vectors,
rameters in a manner similar to that for NGD, C, violated its positive definiteness.)
Next, we compared the learning curves between SGD,
dR; K IR NGD, and ANGD under various teacher weight vector cor-
G - [‘Uik <5ka>Z + <5kZ >zQik [T] ] relations. (The angle between teacher weight vectors is de-
k=1 *) noted as.) Figure 2 shows the learning curves for (a) SGD,
dS;; K N orlo (b) NGD, and (c) ANGD. We can see that ANGD had almost
o —UZ [wik <(5ka>2 + <5k2 >29ik [RT} } the same performance as NGD and does not have any severe
k=1 *l plateaus. Moreover, ANGD was not greatlffezted by the

debi K teacher correlations, although SGD was.
h_.2 A+ {(S1O ) . . . .
o 7 Z Wik OKkd1)z Wij,s Finally, we reveal the key conditiorffacting the learning
kl=1 plateau in ANGD. NGD is known to have a plateau when the
dQj _ dSy A dS;  déy (93) leaming ratey s too large [6]. We found that a plateau occurs

de  da  do de - in ANGD not only in the large; case, but also in the small
ase. Figure 5(a) shows the time cost of learning under a wide

Note that these usual order parameter dynamics are not Ange ofy andp. This contour graph suggests that a plateau
fected by the small fluctuatiorE. (see Appendix C). EQua- coiyrs whert! is large. Our simulation study also supported

tions (90)-(93) are the order parameter dynamics expresseq. . . L . )
by the order parameters themselves. Shis finding (Fig. 5(b)). This phenomenon may be interpreted

to mean thaG* cannot follow a change in the tr@™ if
is relatively large compared 1@

IV. NUMERICAL RESULTS

We numerically validated the theoretical results through V. CONCLUSION
simulation, and evaluated the performance of the simplified

version of ANGD. The numerical results obtained using the We have deve|0ped a new order parameter expression for
theory were comparable with those of the simulation with re-a simplified version of adaptive natural gradient learning in
spect to not only the learning curves but also the learning failwhich the learning dynamics can be expressed using only a
ures. We also found that the performance of ANGD is roughlyfew order parameters. We numerically validated this theory
comparable with that of NGD whehis small. Detailed con-  through simulation and confirmed that this theory successfully
ditions of these numerical results are given in Appendix D. reproduces not only the learning curve, but also the learning

First, we validated the theoretical motion equations by usfailure. We found that the ANGD performance is generally
ing a simulation withN set to 500. The learning curves (time comparable with that of NGD. We also found that we can
evolution of the generalization error) of the theory are showravoid the plateau in ANGD by making the update rate of the
in Fig. 2(c), while those of the simulation are shown in Fig. network parametey low enough compared to the update rate
3(c). There were no significantfterences between the the- of the inverse of the Fisher information mattix
oretical and the simulation results. With respect totthe &
rule, simulation results showed that those adopting this rule
were generally comparable with those not adopting this rule,
although they were slightly slower wheris large. (We show
only the simulation results for adoption of this rule.)

We also evaluated the learning failure of the simplified ver- This work was patrtially supported by Grant-in-Aid for Sci-
sion of ANGD. As this version of ANGD defined by Eq. (12) entific Research on Priority Areas No. 14084212 and Grant-
assumep < 1, a largep could cause problems. The sim- in-Aid for Scientific Research (C) No. 14580438.
ulation results showed divergence of the network parameters
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FIG. 2: Numerical results of the theory. Time evolution of the generalization errpea.01, p = 0.01, andN = 500. (a) SGD, (b) NGD,
and (c) ANGD. NGD and ANGD are not greatlffacted by the angle of the teacher weight vecteyswhereas SGD is.
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FIG. 3: Simulation results. Time evolution of the generalization errgr-a0.01, p = 0.01, andN = 500. (a) SGD, (b) NGD, and (c) ANGD.

The results obtained using the theory in Fig. 2 are comparable to the simulation results.

APPENDIX A: CONVERGENCE OF MATRICES

In this paper, we sometimes refer to matrix or vector ‘con-
vergence’ in the sense of each element, although this word
is usually used in the sense that the norm of thfgedénce

between the series of concern and a given matrix or vectq
converges to zero. As we are dealing with the large limit oft
the input dimensiom, the average okl RN*N-matrices o

N ; b
R™-vectors often converges in the sense of each element, b é
does not in the sense of the norm. We can see one example
this phenomenon id; dynamics in SGD; although each ele-
ment of its fluctuation is small, the norm of this fluctuation is
not zero butAg; (see Eq. (21) and Fig. 1). In the following,

we discuss the convergence of matfixused in Eq. (44).
Let us estimate the order &f, specifically, the following

matrix:

whereV W = [g/(ITEW)EW]i_, « € RNK is a random vec-

2~

N
PR AL
u=1

(A1)

1 N
N Zl g (g (ITEVNE!Y.

the , k) element of thei( j) block, is

(A2)

f we drop g(ITEW)g (37 €W), because it (1), we no-
ice that the probability distribution of this element is given

an N-freedom chi-square distribution; i.e., its moment-

0
Inp(t
5 ©(t)

nerating function is defined as

1 ~N/2
o= (122"

Consequently, we get the variance of this element as

2

t=0

(A3)

2
5 (A4)

The non-diagonal element of each block, e.g., thé) ele-

tor dependent on the random inpgfit~ N(O, 1). Here, the
superscript ok®) denotes not the time but simple identifica-
tion. The diagonal element of each block of this matrix, e.g.,

2=

ment of the {, j) block, is

N
D g@TENg (AT,
pu=1

(A5)
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FIG. 4: Learning failure of the simplified version of ANGD witth = 100. (a) Time evolution of the generalization error under the conditions
of = 0.02 andp = 0.1. (b) Contour graph under various values;andp. The probability of learning failure is shown with respect to the
simulation results because the simulation was a stochastic process. Numerical results of the theory well predicted the learning failure in
simulation.
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FIG. 5: Contour graphs of the time cost neededeoio reache; < 1077 for various values ofy andp in ANGD. Here,x was set tor/8. (a)

Results obtained using the theory, and (b) simulation results. &imas normalized as 1@@. The plateau length was strongly dependent on
n
P’

Similarly, we notice that this distribution is given by an aver-
age ofN modified Bessel functions of the second kind. Then,
we get the moment generating function,

-N/2
1 2
={1-{=
o0 { {Nt}} ,
and the variance a$.
Therefore, each element of the matrix converge@(a%),

(A6)

but the Frobenius norm diverges @§VN) because this ma-
trix hasNK x NK elements. In other word§, F — G holds

with respect to each element, but does not converge with re-
spect to the Frobenius norm.

FIG. 6: Intuitive schema of the null spaceldfandU-+dU.

order of theUTdV,VTdU, andVTdV terms, which are used
in Egs. (70)-(73). We especially pay attention to the
fact that some of the inner products between infinitesimal
changes oN-dimensional vectors are nd(d?) butO(d); e.g.,

We prove that, with respect t, the orders of each el- [dU]'dU = d¢’ = [dg’ 8] € RICMIXIKMI We then consider
ement of the matrices, Q,€Q',Q", andQ"’ are at most Egs. (69)-(73).
0(1),0(2), O(%),O(%ﬁ), andO(3). First, we evaluate the  First of all, we explicitly determine/, the orthonormal

APPENDIX B: ORDERS OF w, Q,Q’, Q" AND Q"



bases of the null space of the weight vectors, ulrand dJ.
We find that some of the orthonormal bases of\fh&ubspace
can be expressed usikband dJ as

1
2 c RNX{KH\/I],

® =0 [0 0 (B1)

where

@ =[1 -UCUT|dU e RNAKMI, (B2)
Here, @’ is the orthogonal component of th&do U sub-
space, whileb is the normalized’; i.e., ®"® = | (see Fig.
6). (We assume the rank ofiJds K+M for simplicity, although

it is actuallyK.) Note thatUC™*UT is a projection matrix to

theU subspace. In a similar manner, we also find that some of
the orthonormal bases of thve-dV subspace can be expressed

usingU and dJ as

=y [\P/T\P/]_i c RNX{K+M}’ (B3)
where
¥ = -l - [U+dU][C+dC] ' [U+dU]"|U
e RNk (B4)

Here, ¥’ is the orthogonal component bfto theU+dU sub-
space, while¥ is the normalized?’; i.e., ¥TW¥ = |. Thus,
we can think that some of the orthonormal bases oflseib-
space correspond t®, and ® moves to¥ asV moves to
V+dV. However, the column vectors df and¥ do not nec-
essarily coincide with some of the column vectorsvoénd

V +dV, respectively; i.e., some rotation or mirror image con-
version might be required. Hence, we introduce an appropr

ate orthonormal matriV € RINKMXINKM “and explicitly
express/,V+dV, and &/ as

V =[®,V']M, (B5)
V+dV = [, V'] M, (B6)
dv = [¥-®,0] M, (B7)

whereV’ is one of the set of orthonormal bases of the null

space olJ andU+dU. Note that each of

lucz.v].

[SleX RVA

[[U+dU][C+dC] Vav],

|[U+du] [C+dC] 2, P, v, (B8)

dwij = plw — wAw];jde,

dQjj = pC 2 [ — QAG - & + s — @a0],
- Q;j[dC-dO]"C™* + CH[dU]" Ve + Q[ VT[dU]C ™,

-CdC-dOjQ;; -

13

consists of the orthonormal bases of the whole space. If we

decomposeM as|}y’, we can rewrite Eq. (B5)-(B7) as

= [(I),V/] M = (I)Mo + V,Ml,
V+dV = [¥,VIM = ¥Mg + V' My, (B10)

dv = [VY-®,0|M = [¥-D]Mo. (B11)

TheV’ and M contain some arbitrariness, althoughM; is

well-defined. However, we can avoid using them as shown
below.

We can then calculate th¥TdU,[dV]™U, and [&V]TV
terms. We find that the norms of the column vectory bflU,

(B9)

[dU]"VvVTdu
= [dU]"[®, V'IMM T[®, V']TdU
=d¢’, (B12)

areO(1) with respect tdN. Note thatMMT = | by its defi-
nition. As the orthonormal matri# does not change a ma-
trix norm, each element of th¥-dimensional vectoryTdU

is O(\/AN). In a similar manner, we can calculate the norm of

[dV]TU

UT[dV][dV]TU
=UT[Y-®,0)MMT[¥-®,0]"U
=d¢’. (B13)

This also means that each element &J0U is O(%) These

iresults are used after Eq. (73). Equation (B13) is also used to

derive Eq. (82). We also find that each element ][tV is
(Nz) because

VTdV]

= MT[@,V']"[¥-®,0|M

_ _uyt|AO

[ Y

= ~Mg AMo, (B14)
wherel each element of A . =
[dg'] % [[d¢'1C1[dC~dO] + [dO]CdOT | [dg'] 2 is

0O(1), and these elements are scatterel to N elements by
M.

Next, we consider the orders of Egs. (69)-(73):

(B15)
Cida
(B16)
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dQ; = pC2 [ — QALY - i - fz’isz”'].. da

-C'[dC-dO]Q; + ;v [dV] +CHdU]T Ve + @;;UT[dV], (B17)
dQf=p [0 -Q'AQ-IQ" - Q"’Im”]ij “3da

+  [AV]'Ve - Qf[dC-dO]"C Tt +  [dV]TUQ;; + @'V [dU]C, (B18)
dQ;’ = Q" - Q"AQ - £AQ" - Q" A - 9'"19"']” da

+  [Av]'Ve + Q'VT[dV] +  [dv]TuQ) + QUT[dV]. (B19)

Each element of the matric&3 dC, and dD are considered Then, we notice that<6k6|§TUAU§>§ is O(1), while
to be O(1) with respect tdN. TheA andA are also consid- , "

ered to beD(1). Matrix normalization denoted with tilde (e.g., <6k6'§TUA Vf) and <6k6'§TVA U"f)f are 0.
Q) is considered to not change the order. Matrix size exten{6k6|§TVA”’V§> is at mostO(1) because each element of
sion (e.g.,) is also considered to not change the order. Asprr
the initial value ofH is defined as an unit matrix, we can let
w=1,9=09Q =09 =0, andQ’” = 0 as initial values.
Then, we notice the following. 1 is O(1) from the initial

Moreover,

A" = wi Q] + w)Qy + QCY + QCQY,  (C5)

state. 2) Therp soon become®(1), becaused;; has aO(1)
term: - + @wAw. 3) Then, Q" andQ” soon becom@(%),
because &; and d/ have aO(%) term: ©;;UT[dV] and
[dV]TUQ;, respectively 4) TherQ’”” soon become@( ),
because &/’ has aO(#) term: [V]TUQ, + QUT[dV]. 5)

is O(ﬁ). As all the terms in Eq. (C3) are scaled ﬁywe can
ignore them. Therefore, we can completely ignore tfiece
of E in the usual order parameter dynamics.

There is no contradlctlon if we assume these orders are pre-

served.

APPENDIX C: EFFECT OF E

We find that the fluctuation terra defined by Eq. (50) as

0

Q// Q/// [U V]T
1]

e, =1uv| 1)

APPENDIX D: DETAILED CONDITIONS FOR
NUMERICAL RESULTS

For numerical results, we considered a realizable case, in
which the numbers of the hidden units for both the teacher
and student networks were set to twd £ M = 2). With
respect to the order parameter dynamics, the initial conditions
of the usual order parameters were set as follows. The square

does not fect the usual order parameter dynamics undetengths of all teacher weight vectoFg were set to 1, while the

the assumption that each element€f,Q; and Q" are

O(%), O(%), andO(#), respectively (see Appendix B).
Here,E is negligible with respect to the dynamicsRfand

Sin Eq. (47). This is because all the terms includiBgre 0

as shown

(0TELB)), = (sTVOTUTB;),
= (€29 (%)), (V"),Q'UTB; =0,
<5k§T Eik > <(5k§TVQ"T >

= (€29 (), (V') @y TUTI =0, (C2)

wherev = VT¢é ~ N(0,1) is independent oz = UT¢ =
[X1, s Xk, Y1, - Ym] T, and(v), = 0.

E is also negligible with respect to the dynamicsgofAll
the terms includinde can be expressed as

A A

1 T T
N <6k6|§ [U’ V] |:A// AH/:| [U’V] §>§ ) (CS)
where
A A - T
[A” Am] = HixHj — [wik+UQyU " J[w; +UQ;U"] (C4)

angle between the teacher weight vectnars,arccosL

VT11T22

was set to a moderately correlated vala¢d, unless other-
wise stated. The initial conditions with respect to the stu-
dent weight vectors were determined according to the corre-
sponding expected values of random chalce- N(0, & 1);

ie., Qi = LQj = 0, andR; = 0. OnlyRj(i # j), the
inner products between the student weight vectors and non-
corresponding teacher vectors, were set to a small negative
valueR;—rj; to break the permutation symmetry a little, where
we adopted a 1 standard deviation (S.D.) rule; i.e.,

[T+ T, -2,
rij = yVan(Ri-Rj) = EURA e} ;\JI L

where Vaj(e) denotes the variance ef with respect toJ.
Then, we solved the order parameter equations using the
Runge-Kutta method with time intervale = 0.1. With re-
spect to our simulation, the initial states Bfand J were
determined to satisfy the conditions of the order parameters
above.

(D1)
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