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Adaptive natural gradient descent (ANGD) realizes natural gradient descent (NGD) without needing to know
the input distribution of learning data and reduces the calculation cost from a cubic order to a square order.
However, no performance analysis of ANGD has been done. We have developed a statistical-mechanical theory
of the simplified version of ANGDPresent address: ft commPresent address: Present address: Present address:
Present address: Present address: Present address: ittee machines in on-line learning; this method provides de-
terministic learning dynamics expressed through a few order parameters, even though ANGD intrinsically holds
a large approximated Fisher information matrix. Numerical results obtained using this theory were consistent
with those of a simulation, with respect not only to the learning curve but also to the learning failure. Utilizing
this method, we numerically evaluated ANGD efficiency and found that ANGD generally performs as well as
NGD. We also revealed the key condition affecting the learning plateau in ANGD.

PACS numbers: 02.50.-r, 05.20.-y, 07.05.Mh

I. INTRODUCTION

Feed-forward multilayer perceptrons are known to have dif-
ficulty determining their parameters using a set of training
data. This is because of the non-linearity of their activa-
tion functions, which prevents the use of analytical estimation
methods; e.g., maximum likelihood estimation. An alterna-
tive approach is to use the stochastic gradient descent, which
introduces an error function for a given learning sample in a
supervised learning framework and adjusts the network pa-
rameters step by step to reduce the error.

Steepest gradient descent (SGD), equivalent to back-
propagation, is a simple and useful gradient descent method,
but it suffers from a learning plateau, which is a long learn-
ing period with poor error reduction. This learning plateau is
caused by the permutation symmetry (i.e., an exchange of two
hidden units in the same layer has no effect on the network
output) because it creates a saddle structure in the generaliza-
tion error function [1, 2]. Moreover, the plateau period is pro-
longed when the weight vectors of hidden units in the teacher
network are correlated [3].

In contrast, previous works have shown that natural gradi-
ent descent (NGD) [4, 5] has almost optimal learning perfor-
mance (Fisher efficiency). NGD does not have any plateau
if the learning rate is set low enough [6]. NGD is also unaf-
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fected by the correlation between the teacher weight vectors
[3]. From a general view, one of the greatest advantages of
NGD could be its independence of the parameterization of
a given network model. Another advantage may be that the
premultiplier of the gradient of the error – the inverse of the
Fisher information matrix – is not dependent on learning data
or the error function and is necessarily positive definite. There
are similar methods that use the inverse of the Hessian matrix
as the premultiplier. However, these methods may be unsta-
ble, because their premultiplier intrinsically depends on learn-
ing data and is not necessarily positive definite [7].

Adaptive natural gradient descent (ANGD) [8, 9] is an at-
tractive form of NGD with respect to both the calculation cost
and the input distribution of training data. ANGD reduces the
calculation cost from a cubic order of the number of network
parameters to a square order, and does not need to know the
input distribution. Moreover, ANGD retains some of the ad-
vantages of NGD; e.g., its approximated inverse of the Fisher
information matrix is necessarily positive definite. However,
no previous research has quantified the learning performance
of ANGD with respect to its practical applicability.

In this paper, we evaluate the learning efficiency of a sim-
plified version of ANGD for soft committee machines. (Soft
committee machines consist of simplified two-layer percep-
trons.) ANGD is intrinsically elaborated for on-line learning.
On-line learning [7, 10] facilitates analysis because it uses
each learning sample only once, so the network state is in-
dependent of each learning sample. We employed statistical-
mechanical techniques which extract order parameters and
make the stochastic learning dynamics converge towards de-
terministic at the large limit of the input dimensionN [1, 2].

II. MODEL

We define teacher and student network models, stochastic
gradient learning rules of the student parameters (SGD, NGD,
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and ANGD), and an adaptive estimation of the inverse of the
Fisher information matrix for ANGD. We use a soft commit-
tee machine withM hidden units as a teacher network and one
with K hidden units as a student network:

fB(ξ) ≡
M∑

k=1

g(BT
k ξ), (1)

fJ (ξ) ≡
K∑

k=1

g(JT
k ξ), (2)

where•T denotes the transpose,Bk ∈ RN and Jk ∈ RN are
column vectors that represent thekth weight vectors forN-
dimensional inputξ ∈ RN, andg denotes the activation func-
tion. We define the probability density function for each net-
work for NGD and ANGD. The function for the teacher net-
work is defined with inputξ and outputζ as

pB(ξ, ζ) ≡ p(ξ)δ(ζ − fB(ξ)), (3)

where p(ξ) is the input distribution andδ is the Dirac delta
function. The probability density function for the student net-
work is defined with inputξ and outputζ′ using normal dis-
tributionN( fJ (ξ),1):

pJ (ξ, ζ′) ≡ p(ξ) 1√
2π

exp
(
− 1

2{ζ′− fJ (ξ)}2
)
. (4)

The student distribution is modified incrementally by adjust-
ing its parameter vectorJ≡ [JT

1 , J
T
2 , .., J

T
K ]T ∈ RKN to approx-

imate the teacher distribution.
The error of student output from teacher output is defined

as

εJ (ξ) ≡ 1
2{ε̌J (ξ)}2, (5)

where

ε̌J (ξ) ≡ fJ (ξ)− fB(ξ). (6)

The generalization error is also defined as the expected error:

εg(J) ≡ 〈
εJ (ξ)

〉
ξ , (7)

where〈•〉◦ denotes the expectation of• with respect to a ran-
dom variable◦.

The parameter update rule in gradient descent can be writ-
ten, in general, asJ := J + ∆J, where

∆J = − η
N

M ∇JεJ (ξ) = − η
N
ε̌J (ξ)M∇ f , (8)

while M ∈ RNK×NK, η
N > 0 is a scaled update rate,∇ denotes

the gradient, and∇ f ∈ RNK denotes∇J fJ (ξ). We can imple-
ment SGD by settingM = I (unit matrix), NGD by setting
M = G−1 [4], and ANGD by settingM = Ĝ−1 [8, 9]. TheG
denotes the Fisher information matrix of parameter vectorJ
defined as

G ≡
〈
[∇J ln pJ (ξ, ζ′)][∇J ln pJ (ξ, ζ′)]T

〉
{ξ,ζ′}

=
〈
[∇ f ][∇ f ]T

〉
ξ
, (9)

while Ĝ is an adaptively approximated matrix ofG obtained
by ANGD. The update rule of̂G is given asĜ := Ĝ + ∆Ĝ,
where

∆Ĝ ≡ ρ

N

[
−Ĝ + [∇ f ][∇ f ]T

]
, (10)

while 0 < ρ
N < 1 is an update rate. ANGD does not use

the input distributionp(ξ), but shares each input sampleξ
with the update rule ofJ, and approximatesG step by step.
Realistically, rather than Eq. (10), ANGD adopts an ex-
actly equivalent rule using the Sherman-Morrison formula:
Ĝ−1 := Ĝ−1 + ∆Ĝ−1, where

∆Ĝ−1=

ρ
N

1− ρ
N

Ĝ−1− Ĝ−1[∇ f ][∇ f ]TĜ−1

1+
ρ
N {[∇ f ]TĜ−1[∇ f ]−1}

 . (11)

Equation (11) offers the great advantage that we can omit the
expensive matrix inversion (O({NK}3)) and achieve lower cal-
culation costO({NK}2). Here,Ĝ−1 is always positive definite
and symmetric if the initial value is positive definite and sym-
metric. For an initial value, we chooseI for simplicity. ANGD
is always applicable if SGD is applicable, because∇ f is re-
quired even in the case of SGD, whereas NGD cannot always
be applied when the input distribution is unknown.

Whenρ � 1, Eq. (11) can be reduced to a simple form:

∆Ĝ−1=
ρ

N

[
Ĝ−1−Ĝ−1[∇ f ][∇ f ]TĜ−1

]
. (12)

This approximation was introduced by Amari et al [8]. In
this paper, we investigate this simplified version of ANGD in
detail under the assumption of smallρ. We also elucidate what
happens when this assumption is violated.

III. THEORETICAL RESULTS

In this section, we show the order parameter expression of
the system dynamics in ANGD, where we use both the usual
and newly introduced order parameters. With respect to SGD
and NGD, the usual order parameters are sufficient to explain
the system state because the system has rotation invariance un-
der the assumption of Gaussian input (ξ ∼ N(0, I )); i.e., the
system is equivalent to one with rotated weight vectorsJ i , Bi .
The usual order parameters can also describe the Fisher in-
formation matrixG andG−1. We need new order parameters
for ANGD, though, to describe the approximated inverse of
the Fisher information matrix̂G−1. To make the present pa-
per self-contained, we first briefly summarize the derivation
of the usual order parameter equations of the soft committee
machines for SGD [1, 2] and NGD [5, 6]. Then, we explain
the new order parameter expression for ANGD.

A. Generalization error

The usual order parameters are the inner products among
all weight vectors:

Q ≡ [Qi j ] i, j=1,..,K , Qi j ≡ JT
i J j ,

R ≡ [Ri j ] i=1,..,K, j=1,..,M , Ri j ≡ JT
i B j ,

T ≡ [Ti j ] i, j=1,..,M , Ti j ≡ BT
i B j .

(13)
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Here, Q ∈ RK×K means the inner products matrix for the
student weight vectors, whileR ∈ RK×M means the matrix
containing the inner products between the student and teacher
weight vectors. TheQ and R are updated according to the
updating ofJ. Here,T ∈ RM×M means the inner products
among the teacher weight vectors; this is fixed. The square
length of each input, and the inner products between the input
and the weight vectors are temporarily used to describe the
micro dynamics:

χ ≡ ξTξ,
x ≡ [xi ] i=1,..,K , xi ≡ JT

i ξ,
y ≡ [yi ] i=1,..,M , yi ≡ BT

i ξ.
(14)

Here,χ ∈ R stochastically converges toN (χ
P→ N) at the

large limit ofN. Also, x ∈ RK andy ∈ RM are random vectors
dependent on inputξ. The distribution ofz ≡ [xT , yT ]T ∈
RK+M is determined using the order parameters:z ∼ N(0,C)
where

C ≡
[

Q R
RT T

]
∈ R{K+M}×{K+M}. (15)

We can then substitute the order parameters and these ran-
dom variables for allN-dimensional vectorsBi , J i , andξ.
The number of order parameters is sufficiently small because
it does not depend onN, and this facilitates system analysis.
For example, the generalization error can be expressed as

εg(C) =
1
2

∫
dzp(z)


K+M∑

k=1

ckg(zk)


2

, (16)

whereck is 1 if k ≤ K or −1 if k > K. Here and hereafter, we
assumeg(x) = erf(x/

√
2), where erf(x) ≡ 2√

π

∫ x

0
dt e−t2 is the

conventional error function. The generalization error can then
be rewritten as an analytical function [1],

εg(C) =
1
π

K+M∑

i, j=1

cic j arcsin
Ci j√{Cii +1}{C j j +1} . (17)

B. Steepest Gradient Descent

The dynamics of the order parameters for SGD can be ex-
pressed using the order parameters themselves [1, 2]. From
Eq. (8), the update rule for parameterJ is

∆J i = − η
N
δiξ, (18)

where

δ ≡ [δi ] i=1,..,K , δi ≡ ε̌J (z)g′(xi), (19)

while g′ is the derivative ofg. Thus, the update rules of the
order parameters can be written as

∆Ri j = [∆J i ]
T B j = − η

N
δiy j ,

∆Qi j = [J i + ∆J i ]
T [J j + ∆J j ] − JT

i J j

= ∆Si j +∆S ji + ∆φi j , (20)

B1

J1

J1+dJ1

√

dφ1,1

|dR1,1|

‖B1‖

|dS1,1|

‖J1‖

FIG. 1: Intuitive schema of the learning dynamics at the large limit
of N. In the case ofK = M = 1, J1 mainly moves in the current
subspace made byJ1 andB1 according to the gradient of the error,
but necessarily moves out of this subspace into the null space, or the
complementary subspace, ofJ1 andB1, because the small fluctuation
of J1 in each dimension is summed up resulting in the non-zero term
φ1,1 in Eq. (25).

where

∆Si j ≡ [∆J i ]
T J j = − η

N
δi x j ,

∆φi j ≡ [∆J i ]
T∆J j =

η2χ

N2
δiδ j . (21)

Here and hereafter, we useS ≡ [Si j ] i, j=1,..,K ∈ RK×K andφ ≡
[φi j ] i, j=1,..,K ∈ RK×K for convenience.

Next, we introduce timeα, and specify that time 1/N is con-
sumed by each update. At the large limit ofN, the dynamics
of the order parameters become continuous and deterministic.
For example, the value ofRi j over an infinitesimal time inter-
val (dα) after current timeα is not a random variable, although
each∆Ri j is a random variable.

R(α+dα)
i j = R(α)

i j + lim
N→∞

Ndα−1∑

µ=0

∆R(α+µ/N)
i j

= R(α)
i j − η

〈
δiy j

〉
z
dα. (22)

Therefore, the time derivation ofRi j is

dR(α)
i j

dα
= −η

〈
δiy j

〉
z
. (23)

This expectation with respect toz can be solved analytically
[1]. The dynamics ofQi j can be determined similarly, and we
get

dQi j

dα
=

dSi j

dα
+

dS ji

dα
+

dφi j

dα
, (24)

where

dSi j

dα
= −η

〈
δi x j

〉
z
,

dφi j

dα
= η2

〈
δiδ j

〉
z
. (25)

The order parameter dynamics suggest that, at the large
limit of N, J i necessarily moves out of the current direct sum
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subspace made by all the weight vectorsJ1, .., JK , B1, .., BM,
although it mainly moves toward the subspace made by
B1, .., BM (Fig. 1). The direction of this orthogonal move-
ment to that subspace is always chosen randomly, while the
time derivative of the square distance of this movement is
represented asdφi j

dα in Eq. (24). This orthogonal movement

also appears in NGD and ANGD as thedφi j

dα term included in
the dynamics ofQi j , and, moreover, in thêG−1 dynamics for
ANGD.

C. Natural Gradient Descent

The dynamics for NGD can also be expressed through the
order parameters. In this subsection, we first determine the
Fisher information matrix,G, and its inverse,G−1, by using
only Q. Then we derive the motion equations of the order
parameters.

Generally, for anyGi j ∈ RK×K , the (i, j) block of G, can
be expressed with both the student weight vectors,J ′ ≡
[J1, .., JK ] ∈ RN×K , and all the orthonormal bases of the null

space of the student weight vectors,V ∈ RN×{N−K}, which sat-
isfiesVTV = I andJ ′TV = 0, as

Gi j = λi j I + [J ′,V]

[
Λi j Λ′i j
Λ′′i j Λ′′′i j

]
[J ′,V]T , (26)

where λi j ∈ R,Λi j ∈ RK×K ,Λ′i j ∈ RK×{N−K},Λ′′i j ∈
R{N−K}×K , andΛ′′′i j ∈ R{N−K}×{N−K} (to be exact,λi j is verbose).
We can then rewrite Eq. (26) as,

Gi j = λi j I + J ′Λi j J ′
T

+ Ei j , (27)

Ei j ≡ [J ′,V]

[
0 Λ′i j

Λ′′i j Λ′′′i j

]
[J ′,V]T , (28)

whereEi j ∈ RN×N.

We next proveEi j = 0; in other words,λi j and Λi j are
sufficient parameters to expressG. By multiplying the identity

matrix, [J ′,V]
[
[J ′,V]T [J ′,V]

]−1
[J ′,V]T , we can rewriteGi j

as

Gi j =
〈
[∇ fi ][∇ f j ]

T
〉
ξ

= [J ′,V]
[
[J ′,V]T [J ′,V]

]−1
[J ′,V]T

〈
[∇ fi ][∇ f j ]

T
〉
ξ

[J ′,V]
[
[J ′,V]T [J ′,V]

]−1
[J ′,V]T

= [J ′,V]

[
Q−1 0
0 I

] 〈
g′(xi)g

′(x j)

[
xxT xvT

vxT vvT

]〉

ξ

[
Q−1 0
0 I

]
[J ′,V]T

= [J ′,V]

[
Q−1 0
0 I

] 〈
g′(xi)g

′(x j)

[
xxT 0
0 I

]〉

x

[
Q−1 0
0 I

]
[J ′,V]T

= [J ′,V]


Q−1

〈
g′(xi)g′(x j)xxT

〉
x

Q−1 0

0
〈
g′(xi)g′(x j)

〉
x

I

 [J ′,V]T

=
〈
g′(xi)g

′(x j)
〉

x
VVT + J ′

[
Q−1

〈
g′(xi)g

′(x j)xxT
〉

x
Q−1

]
J ′T

=
〈
g′(xi)g

′(x j)
〉

x
I + J ′

[
Q−1

〈
g′(xi)g

′(x j)xxT
〉

x
Q−1 −

〈
g′(xi)g

′(x j)
〉

x
Q−1

]
J ′T , (29)

where∇ fi ≡ g′(xi)ξ, while v ≡ VTξ ∼ N(0, I ). We used〈
g′(xi)g′(x j)xvT

〉
ξ

=
〈
g′(xi)g′(x j)x

〉
x

〈
vT

〉
v

= 0, and
〈
vvT

〉
ξ

=

I . Thus, we can proveEi j = 0 by letting

λi j ≡
〈
g′(xi)g

′(x j)
〉

x
=

2
π

∣∣∣∣∣
Qii +1 Qi j

Qi j Q j j +1

∣∣∣∣∣
− 1

2

, (30)

Λi j ≡ Q−1
〈
g′(xi)g

′(x j)xxT
〉

x
Q−1 − λi j Q−1

= −λi j [ei ,ej ]

[
Qii +1 Qi j

Qi j Q j j +1

]−1

[ei ,ej ]
T , (31)

where | • | denotes a determinant, whileei ∈ RK is a unit
vector whoseith element is 1. Theλi j andΛi j are expressed
with certainty byQ.

Next, we determineG−1 using a similar style to Eq. (27):

[G−1] i j = θi j I + J ′Θi j J ′
T , (32)

whereθi j ∈ R and Θi j ∈ RK×K correspond toλi j and Λi j ,
respectively. If we temporarily adopt normalized expressions
of Λi j andΘi j , defined as

Λ̃i j ≡ Q
1
2 Λi j Q

1
2 + λi j I , (33)

Θ̃i j ≡ Q
1
2 Θi j Q

1
2 + θi j I , (34)

matrix multiplication will be simplified; e.g.,

Gi j Gkl =
[
λi j [ I−UQ−1UT ] + UQ−

1
2 Λ̃i j Q−

1
2 UT

]
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×
[
λkl[ I−UQ−1UT ] + UQ−

1
2 Λ̃klQ−

1
2 UT

]

= λi jλkl[ I−UQ−1UT ] + UQ−
1
2 Λ̃i j Λ̃klQ−

1
2 UT .

(35)

Utilizing this normalization, we can easily obtain

θ = λ−1, Θ̃ = Λ̃−1, (36)

whereλ ≡ [λi j ] i, j=1,..,K andθ ≡ [θi j ] i, j=1,..,K areRK×K symmet-
ric matrices, whileΛ ≡ [Λi j ] i, j=1,..,K , Λ̃ ≡ [Λ̃i j ] i, j=1,..,K ,Θ ≡
[Θi j ] i, j=1,..,K , andΘ̃ ≡ [Θ̃i j ] i, j=1,..,K areRK2×K2

symmetric ma-
trices.

Finally, we obtain the order parameter dynamics for NGD.
In NGD, the rule for updatingJ is given by

∆J i = − η
N

K∑

k=1

δkG−1
ik ξ. (37)

Hence, we obtain the time derivatives of the order parameters
in a manner similar to that for SGD:

dRi j

dα
= −η

K∑

k=1

[
θik

〈
δkx j

〉
z
+

〈
δkxT

〉
z
ΘT

ikR• j

]
,

dSi j

dα
= −η

K∑

k=1

[
θik

〈
δkx j

〉
z
+

〈
δkxT

〉
z
ΘT

ikQ• j

]
,

dφi j

dα
= η2

K∑

k,l=1

θik 〈δkδl〉z θl j ,

dQi j

dα
=

dSi j

dα
+

dS ji

dα
+

dφi j

dα
, (38)

whereR• j denotes thejth column ofR, and so on [6].

D. Dynamics ofĜ−1 for ANGD

In this subsection, we derive the dynamics of the approxi-
mated inverse of the Fisher information matrixĜ−1 (from here
on, for simplicity we writeH instead ofĜ−1) in the simplified
version of ANGD. Unlike NGD, there are three types of dif-
ficulty in ANGD. 1) The dependence betweenJ and H, be-
cause ANGD has two dynamics ofJ and H and they share
each inputξ. We introduce an approximation (two ξ rule) to
negate this dependence. 2) Higher-order self-correlations of
H, which originate from the update rule ofH itself. We negate
these infinite correlations by exploiting theρ � 1 assumption
of the simplified ANGD, becausen-order self-correlation is
scaled byO(ρn). 3) The high complexity ofH; G andG−1

are sufficiently characterized by the subspace of the student
weight vectors, whereasH is not. This complexity will be
managed in the next subsection.

First, we introducetwo ξ rule. From Eqs. (8) and (11), the
value of J and H for an infinitesimal time period (dα) after
current timeα are

J (α+dα) = J (α) +

Ndα−1∑

µ=0

∆J (τ)

= J (α) − η

N

Ndα−1∑

µ=0

ε̌J (τ) (ξ(τ))H (τ)∇ f (τ)
(τ) , (39)

H (α+dα) = H (α) +

Ndα−1∑

µ=0

∆H (τ)

= H (α) +

Ndα−1∑

µ=0

ρ′
[
H (τ) − H (τ)[∇ f (τ)

(τ) ][∇ f (τ)
(τ) ]T H (τ)

]

= {1+ρ′}NdαH (α)−
Ndα−1∑

µ=0

{1+ρ′}Ndα−1−µρ′H (τ)[∇ f (τ)
(τ) ][∇ f (τ)

(τ) ]T H (τ), (40)

whereη andρ are O(1) with respect toN, ρ′ ≡ ρ/N
1−ρ/N , and

τ ≡ α + µ/N, while∇ f (◦)
(•) denotes∇J fJ (ξ(◦))|J=J (•) . These two

equations show that bothJ andH include a common random
vector:∇ f (τ)

(τ) . Therefore,J andH become dependent on each
other. To negate this dependence, we introduce a new update
rule – we draw twoξ independently, one for theJ update and
the other for theH update in each learning step (twoξ rule) –
so that this dependence disappears. Under thistwo ξ rule, we
can fix J during dα, and reduce Eq. (40) to

H (α+dα) = {1+ρ′}NdαH (α)

−
Ndα−1∑

µ=0

{1+ρ′}Ndα−1−µH (τ)F(τ)H (τ), (41)

whereF(τ) ≡ ρ′[∇ f (τ)
(α) ][∇ f (τ)

(α) ]
T . This two ξ rule will be vali-

dated in Section IV.

Next, we negate the higher-order self-correlations ofH. We
notice that this Eq. (41) is still difficult to solve, because it
includes highly self-correlated terms with respect to the old
random matrixF(τ′), (α ≤ τ′ < τ). For example, the most



6

correlated term is

H (α)F(α)H (α)F(α+1
N )H (α)F(α)H (α)F(α+2

N )... (42)

However, we can ignore these terms includingn-order self-
correlation (n ≥ 2), because they are at mostO(ρn) and
small enough under the assumption ofρ � 1 for the simpli-
fied ANGD. Therefore, we sum up only theO(ρ0) andO(ρ1)
terms:

H (α+dα) = {1+ρ′}NdαH (α) +

Ndα−1∑

µ=0

{1+ρ′}Ndα−1−µ

×
[
{1+ρ′}µH (α)

]
F(τ)

[
{1+ρ′}µH (α)

]
. (43)

At the large limit ofN, Eq. (43) becomes

H (α+dα) = eρdα
[
H (α) + {1−eρdα}H (α)GH(α)

]
, (44)

where we use
∑

F → G (see Appendix A for further dis-
cussion about the convergence ofF). Then, we obtain the
dynamics ofH:

dH
dα

= lim
dα→0

H (α+dα) − H (α)

dα
= ρ [H − HGH] . (45)

We also obtain the usual order parameter dynamics. As the
update equation of eachJ i for ANGD is

∆J i = − η
N

K∑

k=1

δkH ikξ, (46)

we can easily get

dRi j

dα
= −η

K∑

k=1

〈
δkξ

T HT
ikB j

〉
ξ
,

dSi j

dα
= −η

K∑

k=1

〈
δkξ

T HT
ik J j

〉
ξ
,

dφi j

dα
=
η2

N

K∑

k,l=1

〈
δkδlξ

T HT
ikH jlξ

〉
ξ
,

dQi j

dα
=

dSi j

dα
+

dS ji

dα
+

dφi j

dα
. (47)

These order parameter dynamics still includeN-dimensional
vectors andN×N matrices, but we obtain the order parameter
dynamics expressed by the order parameters themselves in the
next subsection.

E. Order parameter representation for H ≡ Ĝ−1

In this subsection, we extract the new order parameters
from H. To characterizeH, we should consider the history
of J, which includes two types of movement. 1) Approach

to the corresponding teacher vectors. To deal with this move-
ment, we use not only the student weight vectors but also the
teacher weight vectors to expressH, althoughG andG−1 are
sufficiently expressed by only the current student weight vec-
tors. 2) Escape from the subspace made by all the weight
vectors. The direction of this movement is random, although
its speed is deterministic as specified by the dφ term. The
order parameter expressions of SGD and NGD do not suffer
from this randomness because they discard it by exploiting
the rotation invariance of the system. In ANGD, however,
this randomness upsets the order parameter expression ofH;
it produces a hysteresis component ofH or the residual fluc-
tuating term (E as introduced below) whenH is expressed
through order parameters. This fluctuation term is negligible
at the large limit ofN, but its square is not. Here, we realis-
tically consider theH dynamics by taking the second powers
of this fluctuation term into account, and obtain an effective
order parameter expression ofH. This theoretical result will
be numerically validated in the next section.

First, we expressH in a similar manner toG in Eq. (27) as

H i j = ωi j I + [U,V]

[
Ωi j Ω′i j
Ω′′i j Ω′′′i j

]
[U,V]T (48)

= ωi j I + UΩi j UT + Ei j , (49)

Ei j ≡ [U,V]

[
0 Ω′i j

Ω′′i j Ω′′′i j

]
[U,V]T , (50)

and proveEi j is negligible. Note that we use not only the stu-
dent weight vectors, but also the teacher weight vectors; i.e.,
we useU ≡ [J1, .., JK , B1, .., BM] ∈ RN×{K+M} instead ofJ ′ ≡
[J1, .., JK ]. This is because the student vectors move toward
the corresponding teacher vectors, andH holds the compo-
nent made from the old student vectors. Here,V ∈ RN×{N−K−M}

is re-defined as the orthonormal bases of the null space of
U rather thanJ ′, which satisfiesVTV = I and UTV = 0.
Here, ωi j ∈ R and Ωi j ∈ R{K+M}×{K+M} are the candidates
for the new order parameters. Also,Ω′i j ∈ R{K+M}×{N−K−M},
Ω′′i j ∈ R{N−K−M}×{K+M}, and Ω′′′i j ∈ R{N−K−M}×{N−K−M} are large
matrices. AsH = [H i j ] i, j=1,..,K is a symmetric matrix,
ω ≡ [ωi j ] i, j=1,..,K ,Ω ≡ [Ωi j ] i, j=1,..,K , andΩ′′′ ≡ [Ω′′′i j ] i, j=1,..,K

are also symmetric matrices, whileΩ′ ≡ [Ω′i j ] i, j=1,..,K and
Ω′′ ≡ [Ω′′i j ] i, j=1,..,K are symmetric with respect to each other.

Next, we find appropriate dynamics of
ω,Ω,Ω′,Ω′′, andΩ′′′ that satisfy the dynamics ofH
given by Eq. (45). For convenience, we consider an
infinitesimal change ofH i j from Eq. (45),

dH i j = ρ[H − HGH] i j dα (51)

By substituting Eq. (48) forH, we easily obtain the decom-
posed form of dH i j as

dH i j = γi j I + [U,V]

[
Γi j Γ′i j
Γ′′i j Γ′′′i j

]
[U,V]T , (52)

where
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γi j = ρ[ω − ωλω] i j dα, (53)

Γi j = ρC−
1
2

[
Ω̃ − Ω̃Λ̃Ω̃ − ω̃ + ω̃λ̃ω̃ − Ω̃′λ̃Ω̃′′

]
i j

C−
1
2 dα, (54)

Γ′i j = ρC−
1
2

[
Ω̃′ − Ω̃Λ̃Ω̃′ − Ω̃′λ̃ω̃ − Ω̃′λ̃Ω′′′

]
i j

dα, (55)

Γ′′i j = ρ
[
Ω̃′′ − Ω̃′′Λ̃Ω̃ − ω̃λ̃Ω̃′′ −Ω′′′λ̃Ω̃′′

]
i j

C−
1
2 dα, (56)

Γ′′′i j = ρ
[
Ω′′′ − Ω̃′′Λ̃Ω̃′ − ω̃λ̃Ω′′′ −Ω′′′λ̃ω̃ −Ω′′′λ̃Ω′′′

]
i j

dα, (57)

whereΩ̃ ≡ [Ω̃i j ≡ C
1
2 Ωi j C

1
2 + ωi j I ] i, j=1,..,K , Ω̃′ ≡ [Ω̃′i j ≡

C
1
2 Ωi j ] i, j=1,..,K , and Ω̃′′ ≡ [Ω̃′′i j ≡ Ωi j C

1
2 ] i, j=1,..,K are intro-

duced to simplify multiplications, while,̃λ = [λi j I ] i, j=1,..,K

andω̃ = [ωi j I ] i, j=1,..,K are matrices extended to an appropri-
ate size; e.g., the same size as that ofΩ or Ω′′′. The Λ̃ is
re-defined as̃Λ ≡ [Λ̃i j ≡ C

1
2

[
Λi j 0
0 0

]
C

1
2 + λi j I ] i, j=1,..,K .

The infinitesimal change of Eq. (48) is given by

dH i j = {dωi j }I + W
[
Ωi j +dΩi j Ω′i j +dΩ′i j
Ω′′i j +dΩ′′i j Ω′′′i j +dΩ′′′i j

]
WT

−[U,V]

[
Ωi j Ω′i j
Ω′′i j Ω′′′i j

]
[U,V]T , (58)

whereW ≡ [U + dU,V + dV] ∈ RN×N. Note that the con-
ventional total differential is not applicable becauseU is not
differentiable. We also decompose this matrix byW rather
than [U,V] becauseU andV are also moving,

dH i j = l i j I + W
[
L i j L′i j
L′′i j L′′′i j

]
WT . (59)

Here,L i j , L′i j , L
′′
i j , andL′′′i j are easily determined by calculat-

ing

[
L i j L′i j
L′′i j L′′′i j

]
≡ [WTW]−1WT

[
dH i j−{dωi j }I

]

×W[WTW]−1. (60)

Note thatW[WTW]−1WT is an identity matrix. By erasing
small terms such asO(d2), we obtain the following equation,

dH i j = l i j I + [U,V]

[
L i j L′i j
L′′i j L′′′i j

]
[U,V]T , (61)

where

l i j = dωi j , (62)

L i j = dΩi j + C−1[dC−dO]Ωi j + Ωi j [dC−dO]TC−1 − C−1[dU]TVΩ′′i j −Ω′i j V
T [dU]C−1, (63)

L′i j = dΩ′i j + C−1[dC−dO]Ω′i j −Ω′i j V
T [dV] − C−1[dU]TVΩ′′′i j −Ωi j UT [dV], (64)

L′′i j = dΩ′′i j − [dV]TVΩ′′i j + Ω′′i j [dC−dO]TC−1 − [dV]TUΩi j −Ω′′′i j VT [dU]C−1, (65)

L′′′i j = dΩ′′′i j − [dV]TVΩ′′′i j −Ω′′′i j VT [dV] − [dV]TUΩ′i j −Ω′′i j U
T [dV], (66)

where we used

WTW =

[
C+dC 0

0 I

]
, (67)

WT [U,V] =

[
C+dO [dU]TV
[dV]TU I +[dV]TV

]
, (68)

whereC ≡ UTU =

[
Q R
RT T

]
∈ R{K+M}×{K+M}, dC ≡ [U+dU]T [U+

dU] − C =

[
dQ dR
dRT 0

]
, and dO ≡ [dU]TU =

[
dS dR
0 0

]
.

To realize dH of Eq. (52) through Eq. (61) under the given

U,V,dU, and dV, l i j = γi j and
[
L i j L′i j
L′′i j L′′′i j

]
=

[
Γi j Γ′i j
Γ′′i j Γ′′′i j

]
should be

satisfied. We then easily obtain an appropriate infinitesimal
change ofω,Ω,Ω′,Ω′′, andΩ′′′ as,
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dωi j = ρ[ω − ωλω] i j dα, (69)

dΩi j = ρC−
1
2

[
Ω̃ − Ω̃Λ̃Ω̃ − ω̃ + ω̃λ̃ω̃ − Ω̃′λ̃Ω̃′′

]
i j

C−
1
2 dα

−C−1[dC−dO]Ωi j −Ωi j [dC−dO]TC−1 + C−1[dU]TVΩ′′i j + Ω′i j V
T [dU]C−1, (70)

dΩ′i j = ρC−
1
2

[
Ω̃′ − Ω̃Λ̃Ω̃′ − Ω̃′λ̃ω̃ − Ω̃′λ̃Ω′′′

]
i j

dα

−C−1[dC−dO]Ω′i j + Ω′i j V
T [dV] + C−1[dU]TVΩ′′′i j + Ωi j UT [dV], (71)

dΩ′′i j = ρ
[
Ω̃′′ − Ω̃′′Λ̃Ω̃ − ω̃λ̃Ω̃′′ −Ω′′′λ̃Ω̃′′

]
i j

C−
1
2 dα

+ [dV]TVΩ′′i j −Ω′′i j [dC−dO]TC−1 + [dV]TUΩi j + Ω′′′i j VT [dU]C−1, (72)

dΩ′′′i j = ρ
[
Ω′′′ − Ω̃′′Λ̃Ω̃′ − ω̃λ̃Ω′′′ −Ω′′′λ̃ω̃ −Ω′′′λ̃Ω′′′

]
i j

dα

+ [dV]TVΩ′′′i j + Ω′′′i j VT [dV] + [dV]TUΩ′i j + Ω′′i j U
T [dV]. (73)

We notice that, with respect toN, the orders of each
element of the matricesω,Ω,Ω′,Ω′′, andΩ′′′ are at most
O(1),O(1),O( 1√

N
),O( 1√

N
), andO( 1

N ) (see Appendix B). This
suggests thatE is negligible at the large limit ofN. Actually, if
we explicitly assume that the escape directions of the student

vectors are completely random,
〈
[ I − UC−1UT ]dU

〉
ξ

= 0 or

equivalently
〈
VTdU

〉
ξ

= 0 or 〈dV〉ξ = 0, the time integrations

of the terms includingUTdV,VTdU, andVTdV converge to
zero, and we obtain

dωi j

dα
= ρ[ω − ωλω] i j , (74)

dΩi j

dα
= ρC−

1
2

[
Ω̃−Ω̃Λ̃Ω̃−ω̃+ω̃λ̃ω̃−Ω̃′λ̃Ω̃′′

]
i j
C−

1
2 − C−1

[
dS
dα +

dφ
dα

dR
dα

0 0

]T
Ωi j −Ωi j

[
dS
dα +

dφ
dα

dR
dα

0 0

]
C−1, (75)

dΩ′i j
dα

= ρC−
1
2

[
Ω̃′−Ω̃Λ̃Ω̃′−Ω̃′λ̃ω̃−Ω̃′λ̃Ω′′′

]
i j

− C−1
[

dS
dα +

dφ
dα

dR
dα

0 0

]T
Ω′i j , (76)

dΩ′′i j
dα

= ρ
[
Ω̃′′−Ω̃′′Λ̃Ω̃−ω̃λ̃Ω̃′′−Ω′′′λ̃Ω̃′′

]
i j
C−

1
2 −Ω′′i j

[
dS
dα +

dφ
dα

dR
dα

0 0

]
C−1, (77)

dΩ′′′i j

dα
= ρ

[
Ω′′′−Ω̃′′Λ̃Ω̃′−ω̃λ̃Ω′′′−Ω′′′λ̃ω̃−Ω′′′λ̃Ω′′′

]
i j
. (78)

These equations guarantee thatΩ′,Ω′′, andΩ′′′ are always
zero at the large limit ofN, because the initial zero values of
Ω′i j ,Ω

′′
i j , andΩ′′′i j are preserved. Consequently, we adoptω

and Ω as the new order parameters, which successfully ex-
pressH.

Next, we consider theHGH term in Eq. (51) because
a small fluctuation ofE might become significant in this
second-order of theH term. Specifically, we evaluate the
square of the fluctuation termE (to be exact,ω andΩ also
fluctuate, but their fluctuations do not become significant be-
cause these matrices are sufficiently small compared withN).

In a similar way as above, we let

[E2] i j = [U,V]

[
Υi j Υ′i j
Υ′′i j Υ′′′i j

]
[U,V]T , (79)

where

[
Υi j Υ′i j
Υ′′i j Υ′′′i j

]
≡

K∑

k=1

[
Ω′ikΩ′′k j Ω′ikΩ′′′k j
Ω′′′ik Ω′′k j Ω′′ikCΩ′k j+Ω′′′ik Ω′′′k j

]
. (80)

Then, an infinitesimal change ofE2 is

d[E2] i j =
[
[E + dE]2 − E2

]
i j
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=

K∑

k=1

W
[
[Ω′ik+dΩ′ik][Ω′′k j+dΩ′′k j] [Ω′ik+dΩ′ik][Ω′′′k j +dΩ′′′k j ]
[Ω′′′ik +dΩ′′′ik ][Ω′′k j+dΩ′′k j] [Ω′′ik+dΩ′′ik][C+dC][Ω′k j+dΩ′k j]+[Ω′′′ik +dΩ′′′ik ][Ω′′′k j +dΩ′′′k j ]

]
WT

−
K∑

k=1

[U,V]

[
Ω′ikΩ′′k j Ω′ikΩ′′′k j
Ω′′′ik Ω′′k j Ω′′ikCΩ′k j+Ω′′′ik Ω′′′k j

]
[U,V]T . (81)

Substituting Eqs. (70)-(73) for dΩ′,dΩ′′, and dΩ′′′, and eras-
ing small terms, we obtain an appropriate infinitesimal change
of Υi j ,Υ

′
i j ,Υ

′′
i j , andΥ′′′i j . Briefly, the point is that [dΩ′ik]dΩ′′k j

is not negligible butΩik

[
dφ 0
0 0

]
Ωk j, becauseUT [dV][dV]TU =[

dφ 0
0 0

]
(see Appendix B). Actually, we obtain,

dΥi j = ρC−
1
2

[
2Ω̃′Ω̃′′ − Ω̃Λ̃Ω̃′Ω̃′′ − Ω̃′Ω̃′′Λ̃Ω̃

− Ω̃′[λ̃ω̃+ω̃λ̃]Ω̃′′
]
i j

C−
1
2 dα

+

K∑

k=1

[
Γ′ikΩ′′k j − C−1[dC−dO]Ω′ikΩ′′k j + Ω′ikΓ′′k j

−Ω′ikΩ′′k j[dC−dO]TC−1 + Ωik

[
dφ 0
0 0

]
Ωk j

]
.

(82)

We notice that each element ofΥi j is initially zero, and be-

comesO(1), becauseΩik

[
dφ 0
0 0

]
Ωk j is O(1), whereas the other

terms,Υ′i j ,Υ
′′
i j , andΥ′′′i j , are considered to be always zero at

the large limit ofN.
We then let the following positive definite and symmetric

matrix

Υ = Ω′Ω′′ ∈ RK{K+M}×K{K+M}, (83)

be another new order parameter, whereΥ = [Υi j ] i, j=1,..,K . In
short, we can write

Ei j → 0, (84)

[E2] i j − UΥi j UT → 0, (85)

or, equivalently,

ωi j I + UΩi j UT → H i j , (86)

K∑

k=1

[ωik I + UΩikUT ][ωk j I + UΩk jUT ] + UΥi j UT

→ [H2] i j , (87)

at the large limit ofN.

This Υ is useful for estimating the matricesΩ′ and Ω′′,
which are required for both thẽΩ′[λ̃ω̃+ ω̃λ̃]Ω̃′′ term in Eq.
(82) and theΩ̃′λ̃Ω̃′′ term in Eq. (75). Intrinsically, an exact
restoration ofΩ′ andΩ′′ usingΥ is impossible, because the
number of elements ofΩ′ andΩ′′ is O(N), while that ofΥ is
O(1). Hence, we substitute one of the probable candidates of
Ω′i j andΩ′′i j for the trueΩ′ andΩ′′; i.e., we use

Ω′i j = Ω′′ji
T

=
1√
n

[
[
√

Υ] i j , · · · , [
√

Υ] i j

]
, (88)

wheren ≡ N−K−M
K+M was assumed to be a natural number. This

Eq. (88) certainly satisfies the necessary condition given by
Eq. (83). Substituting this Eq. (88) for Eq. (82), we obtain

dΥi j = ρ
[
C−

1
2

[
2Υ̃ − Ω̃Λ̃Υ̃ − Υ̃Λ̃Ω̃

]
i j

C−
1
2

−
[√

Υ[λ̃ω̃+ω̃λ̃]
√

Υ
]
i j

]
dα

−C−1[dC−dO]Υi j − Υi j [dC−dO]TC−1

+

K∑

k=1

Ωik

[
dφ 0
0 0

]
Ωk j, (89)

whereΥ̃ ≡ [Υ̃i j ≡ C
1
2 Υi j C

1
2 ] i, j=1,..,K . In a similar manner, we

can substitute Eq. (88) for Eq. (75).

Finally, we obtain the new order parameter dynamics
through Eqs. (74), (75), and (89) as

dωi j

dα
= ρ[ω−ωλω] i j , (90)

dΩi j

dα
= ρ

[
C−

1
2

[
Ω̃ − Ω̃Λ̃Ω̃ − ω̃ + ω̃λ̃ω̃

]
i j

C−
1
2 −

[√
Υλ̃
√

Υ
]
i j

]

−C−1
[

dS
dα +

dφ
dα

dR
dα

0 0

]T
Ωi j −Ωi j

[
dS
dα +

dφ
dα

dR
dα

0 0

]
C−1, (91)

dΥi j

dα
= ρ

[
C−

1
2

[
2Υ̃ − Ω̃Λ̃Υ̃ − Υ̃Λ̃Ω̃

]
i j

C−
1
2 −

[√
Υ[λ̃ω̃+ω̃λ̃]

√
Υ
]
i j

]

−C−1
[

dS
dα +

dφ
dα

dR
dα

0 0

]T
Υi j − Υi j

[
dS
dα +

dφ
dα

dR
dα

0 0

]
C−1
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+

K∑

k=1

Ωik

[
dφ
dα 0
0 0

]
Ωk j. (92)

Intuitively, in Eqs. (90)-(92), the terms includingρ correspond

to the dynamics ofH, whereas the terms including
[

dS
dα +

dφ
dα

dR
dα

0 0

]

keep the component ofH constant which is still expressible by

Ω or Υ under the movement ofU. The term including
[

dφ
dα 0
0 0

]

means the component ofH which is no longer expressible by
Ω under the escape movement ofU into the null space ofU.

The dynamics of the usual order parameters for ANGD
given by Eq. (47) can be rewritten using the new order pa-
rameters in a manner similar to that for NGD,

dRi j

dα
= −η

K∑

k=1

ωik

〈
δkx j

〉
z
+

〈
δkzT

〉
z
ΩT

ik

[
R
T

]

• j

 ,

dSi j

dα
= −η

K∑

k=1

ωik

〈
δkx j

〉
z
+

〈
δkzT

〉
z
ΩT

ik

[
Q
RT

]

• j

 ,

dφi j

dα
= η2

K∑

k,l=1

ωik 〈δkδl〉zωl j ,

dQi j

dα
=

dSi j

dα
+

dS ji

dα
+

dφi j

dα
. (93)

Note that these usual order parameter dynamics are not af-
fected by the small fluctuation,E (see Appendix C). Equa-
tions (90)-(93) are the order parameter dynamics expressed
by the order parameters themselves.

IV. NUMERICAL RESULTS

We numerically validated the theoretical results through
simulation, and evaluated the performance of the simplified
version of ANGD. The numerical results obtained using the
theory were comparable with those of the simulation with re-
spect to not only the learning curves but also the learning fail-
ures. We also found that the performance of ANGD is roughly
comparable with that of NGD whenη

ρ
is small. Detailed con-

ditions of these numerical results are given in Appendix D.
First, we validated the theoretical motion equations by us-

ing a simulation withN set to 500. The learning curves (time
evolution of the generalization error) of the theory are shown
in Fig. 2(c), while those of the simulation are shown in Fig.
3(c). There were no significant differences between the the-
oretical and the simulation results. With respect to thetwo ξ
rule, simulation results showed that those adopting this rule
were generally comparable with those not adopting this rule,
although they were slightly slower whenρ is large. (We show
only the simulation results for adoption of this rule.)

We also evaluated the learning failure of the simplified ver-
sion of ANGD. As this version of ANGD defined by Eq. (12)
assumesρ � 1, a largeρ could cause problems. The sim-
ulation results showed divergence of the network parameters

and the system failed to learn the teacher outputs with largeρ
(solid line in Fig. 4(a)). Figure 4(b) shows the borderline be-
tween this learning failure and the success areas with respect
to the η and ρ conditions. Roughly, the failure area corre-
sponded toρ ≥ 0.05. Our numerical solution of the theory
successfully reproduced these learning failures in the simula-
tion, which are shown as the dotted lines in Fig. 4(a) and Fig.
4(b). (We considered a learning failure to have occurred with
the theory when the correlation matrix of the weight vectors,
C, violated its positive definiteness.)

Next, we compared the learning curves between SGD,
NGD, and ANGD under various teacher weight vector cor-
relations. (The angle between teacher weight vectors is de-
noted asκ.) Figure 2 shows the learning curves for (a) SGD,
(b) NGD, and (c) ANGD. We can see that ANGD had almost
the same performance as NGD and does not have any severe
plateaus. Moreover, ANGD was not greatly affected by the
teacher correlations, although SGD was.

Finally, we reveal the key condition affecting the learning
plateau in ANGD. NGD is known to have a plateau when the
learning rateη is too large [6]. We found that a plateau occurs
in ANGD not only in the largeη case, but also in the smallρ
case. Figure 5(a) shows the time cost of learning under a wide
range ofη andρ. This contour graph suggests that a plateau
occurs whenη

ρ
is large. Our simulation study also supported

this finding (Fig. 5(b)). This phenomenon may be interpreted
to mean thatĜ−1 cannot follow a change in the trueG−1 if η
is relatively large compared toρ.

V. CONCLUSION

We have developed a new order parameter expression for
a simplified version of adaptive natural gradient learning in
which the learning dynamics can be expressed using only a
few order parameters. We numerically validated this theory
through simulation and confirmed that this theory successfully
reproduces not only the learning curve, but also the learning
failure. We found that the ANGD performance is generally
comparable with that of NGD. We also found that we can
avoid the plateau in ANGD by making the update rate of the
network parameterη low enough compared to the update rate
of the inverse of the Fisher information matrixρ.
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FIG. 2: Numerical results of the theory. Time evolution of the generalization error atη = 0.01, ρ = 0.01, andN = 500. (a) SGD, (b) NGD,
and (c) ANGD. NGD and ANGD are not greatly affected by the angle of the teacher weight vectors (κ), whereas SGD is.
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FIG. 3: Simulation results. Time evolution of the generalization error atη = 0.01, ρ = 0.01, andN = 500. (a) SGD, (b) NGD, and (c) ANGD.
The results obtained using the theory in Fig. 2 are comparable to the simulation results.

APPENDIX A: CONVERGENCE OF MATRICES

In this paper, we sometimes refer to matrix or vector ‘con-
vergence’ in the sense of each element, although this word
is usually used in the sense that the norm of the difference
between the series of concern and a given matrix or vector
converges to zero. As we are dealing with the large limit of
the input dimensionN, the average ofN RN×N-matrices orN
RN-vectors often converges in the sense of each element, but
does not in the sense of the norm. We can see one example of
this phenomenon inJ i dynamics in SGD; although each ele-
ment of its fluctuation is small, the norm of this fluctuation is
not zero but∆φii (see Eq. (21) and Fig. 1). In the following,
we discuss the convergence of matrixF used in Eq. (44).

Let us estimate the order ofF, specifically, the following
matrix:

1
N

N∑

µ=1

[∇ f (µ)][∇ f (µ)]T , (A1)

where∇ f (µ) = [g′(JT
i ξ

(µ))ξ(µ)] i=1,..,K ∈ RNK is a random vec-
tor dependent on the random inputξ ∼ N(0, I ). Here, the
superscript of•(◦) denotes not the time but simple identifica-
tion. The diagonal element of each block of this matrix, e.g.,

the (k, k) element of the (i, j) block, is

1
N

N∑

µ=1

g′(JT
i ξ

(µ))g′(JT
j ξ

(µ)){ξ(µ)
k }2. (A2)

If we drop g′(JT
i ξ

(µ))g′(JT
j ξ

(µ)), because it isO(1), we no-
tice that the probability distribution of this element is given
by an N-freedom chi-square distribution; i.e., its moment-
generating function is defined as

ϕ(t) =

{
1− 2

{
1
N

t

}}−N/2

. (A3)

Consequently, we get the variance of this element as

∂2

∂t2
lnϕ(t)

∣∣∣∣∣∣
t=0

=
2
N
. (A4)

The non-diagonal element of each block, e.g., the (k, l) ele-
ment of the (i, j) block, is

1
N

N∑

µ=1

g′(JT
i ξ

(µ))g′(JT
j ξ

(µ))ξ(µ)
k ξ

(µ)
l . (A5)
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Results obtained using the theory, and (b) simulation results. Timeα was normalized as 100ηα. The plateau length was strongly dependent on
η

ρ
.

Similarly, we notice that this distribution is given by an aver-
age ofN modified Bessel functions of the second kind. Then,
we get the moment generating function,

ϕ(t) =

1−
{

1
N

t

}2

−N/2

, (A6)

and the variance as1N .
Therefore, each element of the matrix converges asO( 1√

N
),

but the Frobenius norm diverges asO(
√

N) because this ma-
trix hasNK × NK elements. In other words,

∑
F → G holds

with respect to each element, but does not converge with re-
spect to the Frobenius norm.

APPENDIX B: ORDERS OF ω,Ω,Ω′,Ω′′ AND Ω′′′

We prove that, with respect toN, the orders of each el-
ement of the matricesω,Ω,Ω′,Ω′′, andΩ′′′ are at most
O(1),O(1),O( 1√

N
),O( 1√

N
), andO( 1

N ). First, we evaluate the

U

U +dU

Ψ
′

Φ
′

dU

V
′

Φ

Ψ

[dV ]M−1

1
1

1

FIG. 6: Intuitive schema of the null space ofU andU+dU.

order of theUTdV,VTdU, andVTdV terms, which are used
in Eqs. (70)-(73). We especially pay attention to the
fact that some of the inner products between infinitesimal
changes ofN-dimensional vectors are notO(d2) butO(d); e.g.,
[dU]TdU = dφ′ ≡

[
dφ 0
0 0

]
∈ R{K+M}×{K+M}. We then consider

Eqs. (69)-(73).
First of all, we explicitly determineV, the orthonormal



13

bases of the null space of the weight vectors, usingU and dU.
We find that some of the orthonormal bases of theV subspace
can be expressed usingU and dU as

Φ ≡ Φ′
[
Φ′TΦ′

]− 1
2 ∈ RN×{K+M}, (B1)

where

Φ′ ≡
[
I − UC−1UT

]
dU ∈ RN×{K+M}. (B2)

Here, Φ′ is the orthogonal component of the dU to U sub-
space, whileΦ is the normalizedΦ′; i.e.,ΦTΦ = I (see Fig.
6). (We assume the rank of dU is K+M for simplicity, although
it is actuallyK.) Note thatUC−1UT is a projection matrix to
theU subspace. In a similar manner, we also find that some of
the orthonormal bases of theV+dV subspace can be expressed
usingU and dU as

Ψ ≡ Ψ′
[
Ψ′TΨ′

]− 1
2 ∈ RN×{K+M}, (B3)

where

Ψ′ ≡ −
[
I − [U+dU][C+dC]−1[U+dU]T

]
U

∈ RN×{K+M}. (B4)

Here,Ψ′ is the orthogonal component ofU to theU+dU sub-
space, whileΨ is the normalizedΨ′; i.e., ΨTΨ = I . Thus,
we can think that some of the orthonormal bases of theV sub-
space correspond toΦ, and Φ moves toΨ as V moves to
V+dV. However, the column vectors ofΦ andΨ do not nec-
essarily coincide with some of the column vectors ofV and
V+dV, respectively; i.e., some rotation or mirror image con-
version might be required. Hence, we introduce an appropri-
ate orthonormal matrixM ∈ R{N−K−M}×{N−K−M}, and explicitly
expressV,V+dV, and dV as

V = [Φ,V′]M , (B5)

V+dV = [Ψ,V′]M , (B6)

dV = [Ψ−Φ,0]M , (B7)

whereV′ is one of the set of orthonormal bases of the null
space ofU andU+dU. Note that each of

[
UC−

1
2 ,V

]
,

[
UC−

1
2 ,Φ,V′

]
,

[
[U+dU][C+dC]−

1
2 ,V+dV

]
,

[
[U+dU][C+dC]−

1
2 ,Ψ,V′

]
, (B8)

consists of the orthonormal bases of the whole space. If we
decomposeM as

[
M0
M1

]
, we can rewrite Eq. (B5)-(B7) as

V = [Φ,V′]M = ΦM0 + V′M1, (B9)

V+dV = [Ψ,V′]M = ΨM0 + V′M1, (B10)

dV = [Ψ−Φ,0]M = [Ψ−Φ]M0. (B11)
TheV′ andM1 contain some arbitrariness, althoughV′M1 is
well-defined. However, we can avoid using them as shown
below.

We can then calculate theVTdU, [dV]TU, and [dV]TV
terms. We find that the norms of the column vectors ofVTdU,

[dU]TVVTdU

= [dU]T [Φ,V′]MM T [Φ,V′]TdU

= dφ′, (B12)

areO(1) with respect toN. Note thatMM T = I by its defi-
nition. As the orthonormal matrixM does not change a ma-
trix norm, each element of theN-dimensional vectorsVTdU
is O( 1√

N
). In a similar manner, we can calculate the norm of

[dV]TU,

UT [dV][dV]TU

= UT [Ψ−Φ,0]MM T [Ψ−Φ,0]TU

= dφ′. (B13)

This also means that each element of [dV]TU is O( 1√
N

). These
results are used after Eq. (73). Equation (B13) is also used to
derive Eq. (82). We also find that each element of [dV]TV is
O( 1

N2 ), because

VT [dV]

= MT [Φ,V′]T [Ψ−Φ,0]M

= −MT

[
A 0
0 0

]
M

= −MT
0 AM0, (B14)

where each element of A ≡
[dφ′]−

1
2

[
[dφ′]C−1[dC−dO] + [dO]C−1dOT

]
[dφ′]−

1
2 is

O(1), and these elements are scattered toN × N elements by
M .

Next, we consider the orders of Eqs. (69)-(73):

dωi j = ρ[ω − ωλω] i j dα, (B15)

dΩi j = ρC−
1
2

[
Ω̃ − Ω̃Λ̃Ω̃ − ω̃ + ω̃λ̃ω̃ − Ω̃′λ̃Ω̃′′

]
i j

C−
1
2 dα

−C−1[dC−dO]Ωi j −Ωi j [dC−dO]TC−1 + C−1[dU]TVΩ′′i j + Ω′i j V
T [dU]C−1, (B16)
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dΩ′i j = ρC−
1
2

[
Ω̃′ − Ω̃Λ̃Ω̃′ − Ω̃′λ̃ω̃ − Ω̃′λ̃Ω′′′

]
i j

dα

−C−1[dC−dO]Ω′i j + Ω′i j V
T [dV] + C−1[dU]TVΩ′′′i j + Ωi j UT [dV], (B17)

dΩ′′i j = ρ
[
Ω̃′′ − Ω̃′′Λ̃Ω̃ − ω̃λ̃Ω̃′′ −Ω′′′λ̃Ω̃′′

]
i j

C−
1
2 dα

+ [dV]TVΩ′′i j −Ω′′i j [dC−dO]TC−1 + [dV]TUΩi j + Ω′′′i j VT [dU]C−1, (B18)

dΩ′′′i j = ρ
[
Ω′′′ − Ω̃′′Λ̃Ω̃′ − ω̃λ̃Ω′′′ −Ω′′′λ̃ω̃ −Ω′′′λ̃Ω′′′

]
i j

dα

+ [dV]TVΩ′′′i j + Ω′′′i j VT [dV] + [dV]TUΩ′i j + Ω′′i j U
T [dV]. (B19)

Each element of the matricesC,dC, and dO are considered
to beO(1) with respect toN. Theλ andΛ are also consid-
ered to beO(1). Matrix normalization denoted with tilde (e.g.,
Ω̃) is considered to not change the order. Matrix size exten-
sion (e.g.,ω̃) is also considered to not change the order. As
the initial value ofH is defined as an unit matrix, we can let
ω = I ,Ω = 0,Ω′ = 0,Ω′′ = 0, andΩ′′′ = 0 as initial values.
Then, we notice the following. 1)ω is O(1) from the initial
state. 2) Then,Ω soon becomesO(1), because dΩi j has aO(1)
term: −ω̃ + ω̃λ̃ω̃. 3) Then,Ω′ andΩ′′ soon becomeO( 1√

N
),

because dΩ′i j and dΩ′′i j have aO( 1√
N

) term: Ωi j UT [dV] and

[dV]TUΩi j , respectively. 4) Then,Ω′′′ soon becomesO( 1
N ),

because dΩ′′′i j has aO( 1
N ) term: [dV]TUΩ′i j + Ω′′i j U

T [dV]. 5)
There is no contradiction if we assume these orders are pre-
served.

APPENDIX C: EFFECT OF E

We find that the fluctuation termE defined by Eq. (50) as

Ei j ≡ [U,V]

[
0 Ω′i j

Ω′′i j Ω′′′i j

]
[U,V]T , (C1)

does not affect the usual order parameter dynamics under
the assumption that each element ofΩ′i j ,Ω

′
i j and Ω′′′i j are

O( 1√
N

),O( 1√
N

), andO( 1
N ), respectively (see Appendix B).

Here,E is negligible with respect to the dynamics ofR and
S in Eq. (47). This is because all the terms includingE are 0
as shown 〈

δkξ
T ET

ikB j

〉
ξ

=
〈
δkξ

TVΩ′′ik
TUT B j

〉
ξ

=
〈
ε̌(z)g′(xk)

〉
z

〈
vT

〉
v
Ω′′ik

TUT B j = 0,
〈
δkξ

T ET
ik J j

〉
ξ

=
〈
δkξ

TVΩ′′ik
TUT J j

〉
ξ

=
〈
ε̌(z)g′(xk)

〉
z

〈
vT

〉
v
Ω′′ik

TUT J j = 0, (C2)

wherev ≡ VTξ ∼ N(0, I ) is independent ofz ≡ UTξ =

[x1, .., xK , y1, .., yM]T , and〈v〉v = 0.
E is also negligible with respect to the dynamics ofφ. All

the terms includingE can be expressed as

1
N

〈
δkδlξ

T [U,V]

[
A A′

A′′ A′′′

]
[U,V]Tξ

〉

ξ

, (C3)

where[
A A′

A′′ A′′′

]
= H ikH jl − [ωik+UΩikUT ][ω jl +UΩ jl UT ] (C4)

Then, we notice that
〈
δkδlξ

TUAUξ
〉
ξ

is O(1), while〈
δkδlξ

TUA′Vξ
〉
ξ

and
〈
δkδlξ

TV A′′Uξ
〉
ξ

are 0. Moreover,〈
δkδlξ

TV A′′′Vξ
〉
ξ

is at mostO(1) because each element of

A′′′,

A′′′ = ωikΩ′′′jl + ω jl Ω
′′′
ik + Ω′′ikCΩ′jl + Ω′′′ik CΩ′′′ik , (C5)

is O( 1
N ). As all the terms in Eq. (C3) are scaled by1

N , we can
ignore them. Therefore, we can completely ignore the effect
of E in the usual order parameter dynamics.

APPENDIX D: DETAILED CONDITIONS FOR
NUMERICAL RESULTS

For numerical results, we considered a realizable case, in
which the numbers of the hidden units for both the teacher
and student networks were set to two (K = M = 2). With
respect to the order parameter dynamics, the initial conditions
of the usual order parameters were set as follows. The square
lengths of all teacher weight vectorsTii were set to 1, while the
angle between the teacher weight vectors,κ ≡ arccos T1,2√

T1,1T2,2
,

was set to a moderately correlated value,π/8, unless other-
wise stated. The initial conditions with respect to the stu-
dent weight vectors were determined according to the corre-
sponding expected values of random choiceJ ∼ N(0, 1

N I );
i.e., Qii = 1,Qi j = 0, andRii = 0. Only Ri j (i , j), the
inner products between the student weight vectors and non-
corresponding teacher vectors, were set to a small negative
valueRii−r i j to break the permutation symmetry a little, where
we adopted a 1 standard deviation (S.D.) rule; i.e.,

r i j ≡
√

VarJ (Rii−Ri j ) =

√
Tii +T j j−2Ti j

N
, (D1)

where VarJ (•) denotes the variance of• with respect toJ.
Then, we solved the order parameter equations using the
Runge-Kutta method with time interval∆α = 0.1. With re-
spect to our simulation, the initial states ofB and J were
determined to satisfy the conditions of the order parameters
above.
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