2004 年情報論的学習理論**ワークショップ** 2004 Workshop on Information-Based Induction Sciences (IBIS2004) Tokyo, Japan, November 8 - 10, 2004.

樺島 祥介§

Yoshiyuki Kabashima

Sourlas 符号の PCA による解析 II A PCA approach to Sourlas code analysis II

井上 真郷*福島 孝治†岡田 真人‡Masato InoueKoji HukushimaMasato Okada

Abstract: The statistical mechanical approach is a powerful method for understanding large degree of freedom problems, but its application is limited to the class of mean-field models. We try a new general approach; we use an empirical spin distribution obtained through simulation and extract potentially useful axes by principal component analysis (PCA). We adopted two- and three-body Sourlas code to evaluate this approach compared with existing replica theory. The empirical spin distribution projected to these axes showed distinctive patterns corresponding to the phases of the replica method. Moreover, the first principal component conditionally coincided with the order parameter of the averaged spin. These results suggest that this PCA approach could be effective even in more complicated systems we cannot investigate analytically. We also manage the free energy inversion phenomenon by the normalization condition of the free energy distribution.

Keywords: principal component analysis (PCA), replica method, three-body SK model, free energy inversion phenomenon

1 はじめに

統計力学的手法は,確率モデルをベースとする情報処 理分野での有効性が認められている.特にレプリカ法は, 平均場モデルに属する問題に対しては,定量的な解析解 を得ることができる強力な手法で,実際,誤り訂正符号 (Sourlas 符号, Gallager 符号など)や CDMA の性能解 析に用いられている [1, 2].しかし,平均場モデルに属

Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Saitama 351-0198, Japan

E-mail: inoue@sp.dis.titech.ac.jp, Phone, FAX: 81-45-924-5677 ^{†C} 東京大学大学院総合文化研究科 広域科学専攻 相関基礎科学系 〒 153-8902 東京都目黒区駒場 3-8-1

Department of Basic Science, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo 153-8902, Japan E-mail: hukusima@phys.c.u-tokyo.ac.jp

^{‡B}, D 東京大学大学院新領域創成科学研究科 複雑理工学専攻 〒 277-8562 千葉県柏市柏の葉 5-1-5 Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, the University of Tokyo,

Chiba 277-8562, Japan

^E 科学技術振興事業団 さきがけ研究 21「協調と制御」領域 "Intelligent Cooperation and Control", PRESTO, JST E-mail: okada@brain.riken.jp

 ${}^{\S A}.$ E-mail: kaba@dis.titech.ac.jp

する問題はごく限られているため,レプリカ法を直接適用できない多くの問題については,解ける問題からの類 推でしか,系の性質を予測できないのが実情である.

系のシミュレーションと主成分分析 (PCA) を組み合 わせた手法は,平均場モデル以外の一般モデルに対して も適用できる優れた代替手法である.この方法は直感的 には,シミュレーションから得られるスピンの経験分布 を,最も分布の広がりの大きい平面に射影することで, 本来理解しにくい高次元の分布を,低次元の視覚的な分 布に変換する手法である.この手法を用いれば,平衡状 態でのスピン分布の形状が分かるだけでなく,系が緩和 する時のダイナミクスも視覚的な経路として表現するこ とができる.また,本手法は系のシミュレーションさえ 可能ならば適用可能であるため,多くの問題に対して用 いることができる.実際,格子スピングラスモデル[3,4] や,蛋白質の折りたたみ問題[5] に適用されている.

しかし,本手法の有効性はまだあまり検証されていな いため,ここでは平均場モデルに属する Sourlas 符号を テストボードとして,レプリカ法と同等の結果が本手法 で得られるかどうかを比較検討する.Sourlas 符号は SK モデルに対応し,比較的良く調べられているため好都合 である.もし,本手法で系の性質(相)を反映した分布 図が得られたり,主成分が秩序変数と一致していたりす

^{*&}lt;sup>A</sup>東京工業大学大学院総合理工学研究科知能システム科学専攻 〒226-8502 横浜市緑区長津田町 4259-G5-22

Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan ^B 理化学研究所 脳科学総合研究センター 脳数理研究チーム

^{〒 351-0198} 埼玉県和光市広沢 2-1

れば,レプリカ法を使わなくとも同等の結果が得られる ことになり,本手法の有効性を示唆することになる.

2 モデル

ここでは K = 2,3体 Sourlas 符号の復号を議論する. N 個の原信号 $\boldsymbol{\xi} \equiv [\xi_1, ..., \xi_N]$ の各成分 (スピン) は ±1 の 二値の何れかをとるものとし,その事前確率は一様分布 であるとする.送信符号にはスピン K 個の全ての組み合 わせのパリティ $\tilde{J}_{\mu} = \prod_{l \in \mu} \xi_l$ を用いる. $\mu = 1, ..., \binom{N}{K}$ はパリティ(結合)の通し番号を表す. μ は μ 番目の結 合に含まれるスピン番号の集合(要素数は K 個)とす る.通信路は相加的白色ガウス通信路を考え,受信信号 $J \equiv \{J_{\mu}\}$ から,事後確率 $P(\boldsymbol{\xi}|J)$ を計算して原信号 $\boldsymbol{\xi}$ を推定する.この K体 Sourlas 符号の復号過程の性質 は,下記の確率分布で定義される K体 SK モデルの平 衡状態を求める時の性質に対応する [6].

$$P(s) \equiv \frac{\exp(-\beta H(s))}{Z}$$
(1)

$$Z \equiv \sum_{s} \exp(-\beta H(s)) \tag{2}$$

$$H(\boldsymbol{s}) \equiv -\sum_{\mu} J_{\mu} \prod_{l \in \boldsymbol{\mu}} s_l \tag{3}$$

$$J_{\mu} \sim \mathcal{N}\left(\frac{K!J_0}{N^{K-1}}\prod_{l\in\mu}\xi_l, \frac{K!J^2}{2N^{K-1}}\right)$$
(4)

ここで, $s \equiv [s_1, ..., s_N]$ は復号スピンを表し, J_0, J はス ケーリングされた信号強度,ノイズ分散を表す.

3 レプリカ法

3.1 自由エネルギーと秩序変数

この系をレプリカ法を用いて解析すると,図2のよう な相図が得られる[6].レプリカ法では,系の状態を自 由エネルギーを用いて評価する.1スピン当りの自由エ ネルギーは次のように定義される.

$$F \equiv \frac{1}{-N\beta} \ln Z \tag{5}$$

しかし, F の評価には N の指数オーダーの計算が必要 になるため,代わりに $N \to \infty$ での, J に関する平均的 な値を求める.この値は,自然数nをレプリカの数とし て,レプリカトリックを用いて次のように表現できる.

$$f \equiv \lim_{N \to \infty} \langle F \rangle_{\boldsymbol{J}} = \lim_{n \to 0} \frac{\partial}{\partial n} \lim_{N \to \infty} \frac{1}{-N\beta} \ln \langle Z^n \rangle_{\boldsymbol{J}}$$
(6)

()は平均を表す.

鞍点法を用いて, f の値は,

$$m_a \equiv \lim_{N \to \infty} \left\langle \left\langle \left\langle \frac{1}{N} \sum_{i}^{N} s_i^a \xi_i \right\rangle_{\boldsymbol{s}^a} \right\rangle_{\boldsymbol{J}} \right\rangle$$
(7)

$$q_{ab} \equiv \lim_{N \to \infty} \left\langle \left\langle \left\langle \frac{1}{N} \sum_{i}^{N} s_{i}^{a} s_{i}^{b} \right\rangle_{s^{a}, s^{b}} \right\rangle_{J} \right\rangle$$
(8)

をパラメータとする関数の極値として表せる.ここで, m_a はレプリカ aのスピン平均, q_{ab} ($a \neq b$)はレプリカ a, b間の相関を意味し,系のマクロな状態を表す秩序 変数として使える.

3.2 RS 解及び 1RSB 解

Parisi 解は少なくとも 2 体 SK モデルでは秩序変数に 関する正しい解を与えると信じられているが,数値的に 求めるのは容易でないため,レプリカ対称(RS)解,及 び1回のレプリカ対称性の破れ(1RSB)解を求め,これ らの解が矛盾がないかを検証することで代用する.

RS 仮定 $(m_a|_{a=1,..,n} = m, q_{ab}|_{a,b=1,..,n} = q)$ の下では,自由エネルギーは,標準正規分布に従う確率変数uを用いて,次のように表せ,

$$f = \operatorname{extr}_{m,q} \frac{1}{\beta} \left\{ -\frac{\beta^2 J^2}{4} \left((K-1)q^K - Kq^{K-1} + 1 \right) \right. \\ \left. +\beta J_0(K-1)m^K - \left\langle \ln 2 \cosh \theta \right\rangle_u \right\}$$
(9)

$$\theta \equiv \beta \left\{ J_0 K m^{K-1} + J \sqrt{\frac{K}{2} q^{K-1}} u \right\}$$
(10)

極値を与える m, q は以下の方程式の解となる.

$$m = \langle \tanh \theta \rangle_u$$

$$q = \langle \tanh^2 \theta \rangle_u$$
(11)

RS 仮定の検証には , 自由エネルギーの Hesse 行列の正 定値条件 (レプリコンモード , AT 条件)

$$1 - \beta^2 J^2 \frac{K(K-1)}{2} q^{K-2} \left\langle \operatorname{sech}^4 \theta \right\rangle_u > 0 \tag{12}$$

及び,エントロピーの非負条件を用いる.

$$\frac{\beta^2 J^2}{4} \left((K+1)q^K - Kq^{K-1} - 1 \right) -\beta J_0 Km^K + \langle \ln 2 \cosh \theta \rangle_u \ge 0.$$
(13)

1RSB 仮定でも同様に,標準正規乱数 u, v を用いて

$$f = \underset{m,q_{0},q_{1},\nu}{\operatorname{extr}} \frac{1}{\beta} \left\{ -\frac{\beta^{2} J^{2}}{4} \left((K-1) \{ \nu q_{0}^{K} + (1-\nu)q_{1}^{K} \} - Kq_{1}^{K-1} + 1 \right) +\beta J_{0}(K-1)m^{K} - \frac{1}{\nu} \left\langle \ln \left\langle (2\cosh\vartheta)^{\nu} \right\rangle_{\nu} \right\rangle_{u} \right\}$$
(14)
$$\vartheta \equiv \beta \left\{ J_{0}Km^{K-1} + J\sqrt{\frac{K}{2}} \left(\sqrt{q_{0}^{K-1}} \ u + \sqrt{q_{1}^{K-1} - q_{0}^{K-1}} \ v \right)$$
(15)

となる. 極値を与えるm, q_0 , q_1 , ν の条件は

$$\begin{cases}
m = \left\langle \frac{\langle (\cosh^{\nu} \vartheta) \tanh \vartheta \rangle_{v}}{\langle \cosh^{\nu} \vartheta \rangle_{v}} \right\rangle_{u} \\
q_{0} = \left\langle \left(\frac{\langle (\cosh^{\nu} \vartheta) \tanh \vartheta \rangle_{v}}{\langle \cosh^{\nu} \vartheta \rangle_{v}} \right)^{2} \right\rangle_{u} \\
q_{1} = \left\langle \frac{\langle (\cosh^{\nu} \vartheta) \tanh^{2} \vartheta \rangle_{v}}{\langle \cosh^{\nu} \vartheta \rangle_{v}} \right\rangle_{u} \\
\nu = \frac{2}{C} \left(B - \sqrt{B^{2} - AC} \right)
\end{cases}$$
(16)

但し,

$$A \equiv \left\langle \ln \left\langle \cosh^{\nu} \vartheta \right\rangle_{v} \right\rangle_{u} \tag{17}$$

$$B \equiv \left\langle \frac{\langle (\cosh^{\nu} \vartheta) \ln \cosh \vartheta \rangle_{v}}{\langle \cosh^{\nu} \vartheta \rangle_{v}} \right\rangle_{u}$$
(18)

$$C \equiv \beta^2 J^2 (K-1) (q_1^K - q_0^K)$$
(19)

AT 条件及びエントロピー条件は次のようになる.

$$1 - \beta^2 J^2 \frac{K(K-1)}{2} q_1^{K-2} \left\langle \frac{\left\langle \cosh^{\nu-4} \vartheta \right\rangle_v}{\left\langle \cosh^{\nu} \vartheta \right\rangle_v} \right\rangle_u > 0 \quad (20)$$

$$\frac{\beta^2 J^2}{4} \left((K+1) \{ \nu q_0^K + (1-\nu) q_1^K \} - K q_1^{K-1} - 1 \right) -\beta J_0 K m^K + \frac{1}{\nu} \left\langle \ln \left\langle (2 \cosh \vartheta)^\nu \right\rangle_v \right\rangle_u \ge 0 \quad (21)$$

3.3 自由エネルギー反転現象

レプリカ法は,自然数nに対する結果を実数と見做 して解析接続するため,このことに由来する自由エネル ギーの反転現象が知られている.ここでは,3体 SK モ デルの常磁性相-1RSB スピングラス (SG)相境界を決め るにあたって, $n \rightarrow 0$ において自由エネルギーの高い SG 相の方を選択する機序を説明する.自由エネルギー の反転を解消する一般方法は未だ未発見であるが,経験 的には,以下に述べる方法で矛盾は見つかっていない. 具体的に問題となる領域は, $T/J \simeq 0.6514$ で1RSB SG 相が出現してから, $T/J = 1/(2\sqrt{\ln 2}) \simeq 0.6006$ で常磁 性相のエントロピーが負になるまでである.

fを計算する際の部分式g(n)を次のように定義する.

$$g(n) \equiv \lim_{N \to \infty} \frac{1}{-N\beta} \ln \langle Z^n \rangle_J \tag{22}$$

$$f = \lim_{n \to 0} \frac{\partial g(n)}{\partial n} \tag{23}$$

g(n)は,結合Jが(スピン反転速度と同等以上のオーダーで)素早く変化する系がn個独立に連なったものの自由エネルギーを表している,と解釈することができる.

n が自然数の時, g(n) は鞍点法を用いて計算できる. しかし,通常は真っ当に計算せず,様々な仮定の下に解いておいて,正しい解を後で選択する.ここでは,RS 常磁性解, RS SG 解, 1RSB SG 解の三つを計算し, 最 小の解が正しい鞍点解 g(n) として, その解が $n \rightarrow 0$ に おいて, 元の系の正しい相を与えると考える.

g(n) には,分配関数 Z が確率変数であることに由来 する有効条件が一つ知られている(自由エネルギー分布 の規格化条件)[7].系の温度を固定した時,Jによる配 位平均をとらない自由エネルギー

$$\widetilde{f} \equiv \lim_{N \to \infty} F = \lim_{N \to \infty} \frac{1}{-N\beta} \ln Z$$
(24)

は, J の値に依存して決まる確率変数とみることができる.この確率分布を,系のサイズ N が十分大きい時に, N に依存しない関数 c を用いて

$$p(\tilde{f}) \propto \exp\left[-N\beta \ c(\tilde{f})\right]$$
 (25)

と近似できると仮定する .cは規格化条件 $\int_{-\infty}^{\infty} d\tilde{f} p(\tilde{f}) = 1$ より

$$c(\tilde{f}) \begin{cases} = 0 \quad (\tilde{f} = f) \\ > 0 \quad (\tilde{f} \neq f) \end{cases}$$
(26)

を満たす必要がある.ところで g(n) を c を用いて表すと, 鞍点法による近似から次のようになる.

$$g(n) = \lim_{N \to \infty} \frac{1}{-N\beta} \ln \int_{-\infty}^{\infty} d\tilde{f} \ p(\tilde{f}) \ \exp\left[-N\beta \ n\tilde{f}\right]$$
$$\simeq \min_{\tilde{f}} \left[c(\tilde{f}) + n\tilde{f}\right]$$
(27)

c に凸関数という仮定を付加すると, Legendre 変換から *c* の評価が可能である.

$$c(\tilde{f}) = \max_{n} \left[g(n) - n\tilde{f} \right]$$
(28)

ここで,任意の \tilde{f} とnは一対一に対応する.

$$\tilde{f} = \frac{\partial g(n)}{\partial n}, \quad n = -\frac{\partial c(\tilde{f})}{\partial \tilde{f}}$$
 (29)

但し, c の非負性より,

$$\frac{\partial g(n)}{\partial n} \le \frac{g(n)}{n} \tag{30}$$

を満たさない n には対応する \tilde{f} が存在しない. 従って, その場合の鞍点解は f の評価に対しては有効でない. 従 来調べられていたランダムエネルギーモデル (REM) で は,本条件とエントロピー条件が一致するため,本条件 が本質的でない可能性があったが,3 体 SK モデルに関 しては,本条件が単独で破れ,重要な役割を果たす.

また, q_{ab} 行列の分割パラメータ ν に関しては,

$$n \le \nu \le 1 \quad (n \le 1) \tag{31}$$

$$1 \le \nu \le n \quad (n \ge 1) \tag{32}$$

図 1: 3 体 SK モデル T/J = 0.62 での g(n) の候補を示す. n = 1 で常磁性解と RS SG 解が交差し, 微分値は RS SG 解 が最小となる. RS SG 相は n = 0.931 付近で相転移を起こし て 1RSB SG 解になる.常磁性解と 1RSB SG 解は原点を通 る直線で, RS SG 解のみ曲線となる.

を満たさないものは有効ではないと考えられる.

以上により,常磁性解,RSSG解,1RSBSG解につ いて,低温条件 (T/J = 0.62) で有効な g(n) 候補を描 いたのが図1である.0に一番近い自然数という意味で n = 1 を評価対象とすれば,区間0<n<1 で有効であ **り**, n = 1 で最も小さい値をとる解が,正しい相を与え ることになる.しかし,n = 1はレプリカが複数存在し ない系であるので,レプリカに由来する qab の違いは無 視され,常磁性相とSG相は,RS仮定,1RSB仮定等に 関わらず全て同じ値をとる.そのため,次善の策として $rac{\partial g(n)}{\partial n}|_{n=1}$ が最も小さい値をとる解を選択する.3体 SK の場合は RS SG 解となる.この解は $n = \nu \simeq 0.931$ で 式 (30) に起因する相転移を起こして 1RSB SG 解にな リ,n = 0まで続く.レプリカ法が重要視する解析性の 要請から,系の性質は「滑らか」に変化すべきなので, RS SG 解から滑らかに続くこの 1RSB SG 解が正しい 相を与えると考えられる.

4 提案手法

シミュレーションには,交換モンテカルロ法[8]を用 いた.これは,Jは同じだが,温度が異なる複数の系を 用意し,各々の系で通常のシミュレーションを行いつつ, 系の温度も時々入換える手法である.高温でグローバル サーチ,低温でローカルサーチを同時に行うため,ロー カルミニマに留まってしまうことが少ない.また,温度 交換は詳細釣合を満たすよう行うため,設定した全ての 温度についての平衡分布が求まる.これは,simulated annealing法等には無い利点である.

ここでは $N = 128, J_0 = 1$ で固定し,2体については J = 0.0, 0.1, ..., 4.0 に対して $T \equiv 1/\beta = 0.1, 0.2, ..., 4.0$ の 40 温度で,3体については J = 0.00, 0.05, ..., 2.50 に 対して T = 0.05, 0.10, ..., 2.00の 40 温度で,交換モンテ カルロ法を行った.

図 2: レプリカ法で得られる SK モデルの相図.(左)2体, (右)3体.●は図4,5でのシミュレーション条件.

図 3: 斜線部分は,第1主成分ベクトルと原符号との相関 が高い領域で,第1主成分が秩序変数 m にほぼ一致する. (左)2体 SK モデル $\left(\frac{1}{\sqrt{N}}|\boldsymbol{\xi}\cdot\boldsymbol{v}_1|>0.60\right)$. 強磁性相及び強磁 性相の高温の常磁性相にほぼ一致した.(右)3体 SK モデル $\left(\frac{1}{\sqrt{N}}|\boldsymbol{\xi}\cdot\boldsymbol{v}_1|>0.85\right)$. 双安定相にほぼ一致した.

次に,平衡状態に達した系のスピン状態を,1 Monte Carlo step (MCS) 毎に計 M = 80000 回サンプリング $(s^{(1)}, ..., s^{(M)})$ し,以下の手順で PCA を適用した.PCA は分散共分散行列の対角化で求められる.

$$\boldsymbol{\Sigma} \equiv \operatorname{Var}[\boldsymbol{s}] = \boldsymbol{V} \boldsymbol{D} \boldsymbol{V}^T \tag{33}$$

ここで Σ は, 全スピン $s \equiv [s_1, ..., s_N]$ の分散共分散行 列, $D \equiv \text{diag}[d_1, ..., d_N]$ $(d_1 \ge d_2 \ge ... \ge d_N \ge 0)$ は固 有値行列, $V \equiv [v_1, ..., v_N]$ は固有ベクトル行列である. 第 i 固有ベクトル v_i を第 i 主成分ベクトル, 主成分ベ クトルとの内積値 $s \cdot v_i$ を第 i 主成分と呼ぶ (但し, こ こでは随時 $\frac{1}{\sqrt{N}}$ で正規化する).分散共分散行列 Σ は, 経験分布より以下のように推定できる.

$$\Sigma_{ij} = \frac{1}{M} \sum_{k=1}^{M} (s_i^{(k)} - \bar{s}_i) (s_j^{(k)} - \bar{s}_j), \qquad (34)$$

但し, $\bar{s}_i \equiv \frac{1}{M} \sum_{k=1}^{M} s_i^{(k)}$.交換モンテカルロ法を用いて得られた各条件,各温度のスピンデータについてこの操作を行った.

次に,同じM個のサンプリングされたスピン状態 $(s^{(1)},..,s^{(M)})$ を用いて,第1,第2主成分 $(\frac{s\cdot v_1}{\sqrt{N}},\frac{s\cdot v_2}{\sqrt{N}})$

図 4: 提案手法により得られた 2 体 SK モデルの 80000 個のス ピン状態のヒストグラム及び全固有値 (シミュレーション条件 は図 2 の • 参照).上より強磁性相,常磁性相,full RSB SG 相. 各図の横軸及び縦軸は第1,第2主成分 $(\frac{1}{\sqrt{N}} s \cdot v_1, \frac{1}{\sqrt{N}} s \cdot v_2)$.

に従ってヒストグラムを描いた.この操作は N 次元空間に広がるスピン分布を,広がりが最も大きい平面へと 直交射影することに相当する.

5 結果及び考察

PCA より得られた各ヒストグラムは,概ねレプリカ 法で得られた相に対応した特徴的なパターンを示した (図 4,5).更に,PCA の第1主成分が秩序変数 m にほ ぼ一致する領域があった(図 3).これらのことは,ヒス トグラムパターンから逆に相を推定できること,第1主 成分から m の値が推定できることを示唆する.

5.1 ヒストグラム及び固有値

図4,5に提案手法より得られたヒストグラム及び固有 値を示す.全てのヒストグラムは,レプリカ法での結果 と良く一致していると考えられる.固有値も,従来知見 を反映したものが得られた.

2体のヒストグラムは全て,全スピンが反転しても同 じエネルギーという対称性から,必ず原点対称になる. 強磁性相のヒストグラムは,横軸(第1主成分軸)がm軸にほぼ相当し, $m = \pm 1$ に分布が集中している様子が 分かる.固有値も,スピンの対称性に起因する第1固有

図 5:3 体 SK モデルについて図4と同様に描いたもの.上よ り強磁性相,常磁性相,1RSB SG相,双安定相.

値が N になっている以外は,1未満の小さい値になって いる.常磁性相では,全てのスピンはランダムに近くな る筈で,その通り無相関に原点周りに円形に分布してい る.固有値もほぼ1に揃っている.SG 相は full RSB と なる筈で,ヒストグラムはなだらかな連続分布となって おり,特徴を良く表していると考えられる.固有値は, 大きい数個でパワーの殆どを占めており,矛盾しない.

3体のヒストグラムには,2体で見られたような対称 性は無い.強磁性相ではm = 1の解のみで,ヒストグ ラムは少数の結合の弱いスピンがフリップしている以 外は殆ど固まっている様子が分かる.固有値も,全て 1未満の小さい値になっている.常磁性相では,ヒスト グラムは2体と同様原点中心の無相関分布となってい る.固有値もほぼ1に揃っている.SG相(1RSB領域) は $q_0 = 0, q_1 > 0$ となることから,スピン状態は互い に無相関な多数のクラスタを形成しているものと思われ る.ヒストグラムも各クラスタが点在している様子を良 く表している(三角形状の配置については後述).固有値

図 6: T/J = 1.0 での秩序変数 $q_0 = 0, q_1 = 0.893$ に対応するよう, N 次元スピン空間にランダムに N 個のクラスター核を作り, 核クラスタ周囲に相関が q_1 となるようにスピンを配置した人工データを作り, ヒストグラムを描いた.各クラスタに配置させるスピンの数を等比数列とし,その比を左から, 1.0, 1.1, 1.2, 1.3, 1.5 としたところ,比が約 1.2 以上の場合に高頻度に特徴的な三角形形成が再現された.

も2体と同様,一部が大きい値をとっている.双安定相 では,常磁性相の自由エネルギーが最小値となるが,強 磁性相でも極小値をとるため,両方の分布が出現するこ とが期待される.ヒストグラムでは,原点周囲に常磁性 相,右端(第1主成分軸がm軸にほぼ相当しているため m = 1)に強磁性相の分布が見られた.二つの相を容易 に区別できることから,復号の成功判定に使える可能性 がある.固有値は,第1固有値以外は,常磁性相で見ら れた1に揃っている.

5.2 第1主成分と秩序変数 *m*

第1主成分軸とm軸との関係についてまとめると,図 3のようになる.斜線部分が第1主成分とmがほぼ一致 する領域である.2体の場合は対称性から,強磁性相で $m = \pm 1$ の2極分布となり,第1主成分軸とm軸が一致 するのは当然であるが,更に高温側の常磁性相でもその 影響を残して,ヒストグラムが楕円になっているのは興 味深い.一方3体では,強磁性相での分布はm = 1の一 極のみに限定されるため,PCA ではm軸を抽出できな くなる.常磁性相やSG相でも,m = 0のためm軸は 抽出されない.唯一,双安定相では,強磁性相(m = 1) と常磁性相(m = 0)が共存するため,m軸方向の分布 の広がりが検出されることとなる.

5.3 1RSB SG の三角形形成

3体 SG 相 (1RSB 領域) では, ヒストグラムは, 図で 示しているように,三角形の頂点に大きなクラスタが配 置され,残りのクラスタが原点周囲に集まる図がよく得 られた.この現症を確認するため,解析解に合致するよ うな人工データを合成し,同様のヒストグラムを作成し (図 6),同様の三角形が再現されやすいことを確認した.

6 結論

2体及び3体 Sourlas 符号 (SK モデル) に関して, PCA を用いる提案解析手法は, 概ねレプリカ法で得られる結 果と同様の結果を出した.このことは,提案手法から逆に相図などレプリカ法の結果が推定できること,また, レプリカ法が適用できない一般の系に対しても,提案手法が有効であることを示唆する.

謝辞

本論文の一部は科学研究費補助金(課題番号14084204, 14084206,14084212,14580438)によるものである.

参考文献

- Y. Kabashima, T. Murayama, and D. Saad: Phys. Rev. Lett. 84, 1355 (2000)
- [2] T. Tanaka: Europhys. Lett., **54**(4) 540 (2001).
- K. Hukushima and Y. Iba: cond-mat/0207123.
 K. Hukushima: Proceedings of 2003 Joint Workshop of Hayashibara Foundation and SMAPIP Physics and Information–, pp.71. Okayama (2003).
- [4] E. Domany, G. Hed, M. Palassini and A. P. Young: Phys. Rev. B 64, 224406 (2001).
- [5] J. Higo, O. V. Galzitskaya, S. Ono and H. Nakamura: Chem. Phys. Lett. **337**, 169 (2001).
- [6] H. Nishimori: Statistical Physics of Spin Glasses and Information Processing, Oxford University Press Inc., New York (2001).
 H. Nishimori and K. Y. M. Wong: Phys. Rev. E, 60(1) 132 (1999).
- [7] K. Ogure, Y. Kabashima: Prog. Theor. Phys., 111(5) 661 (2004).
- [8] K. Hukushima and K. Nemoto: J. Phys. Soc. Jpn., 65(6) 1604 (1996).