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Belief propagation (BP) and the concave convex procedure (CCCP) are methods that can be used

successfully to minimize the Bethe free energy of graphical models. The mechanisms of these methods,

however, have not been well elucidated. We propose a method based on the Bowman-Levin (BL) approx-

imation, which is another equation of the extrema of the Bethe free energy, so that we can compare the

mechanisms of these methods and develop potentially better algorithms. We validated the BL algorithm

through the decoding problem of low density parity check codes (LDPCC), and found that BL empirically

ascends the Bethe free energy by means of simple iterated substitutions; BP and CCCP, on the other

hand, descend the Bethe free energy. We also found that the gradient method causes BL to successfully

converge.

Introduction

Recently, various statistical inference algorithms have become of interest in the field of large-scale infor-

mation processing. Belief propagation (BP)[1] and the concave convex procedure (CCCP)[2] are among

the most effective of these methods which minimize the Bethe free energy[3, 4]. BP and CCCP have

both been used to successfully decode low density parity check codes (LDPCC) [5]. The mechanisms of

these methods, however, have not yet been well elucidated. Specifically, we wonder why BP minimizes

the Bethe free energy although this is not a direct aim of the BP method. We also wonder why CCCP

successfully converges to a local minimum of the true Bethe free energy although CCCP descends the

modified Bethe free energy.

In this paper, we introduce a new algorithm based on the Bowman-Levin (BL) equation[6], which

minimizes the Bethe free energy. The Bowman-Levin equation is widely used in the field of statistical
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physics as a method that can find an extremum (saddle, local minimum, or local maximum) of the Bethe

free energy. Through a comparison of BL with BP and CCCP, we hoped to elucidate the mechanisms of

these methods.

LDPCC

The LDPCC decoding problem can be handled within a Bayesian framework. The prior probability of

the codes, consisting of N binary spins (x ∈ {+1,−1}N ), is defined as

P (x) ∝
M∏
µ


1+

∏

l∈µ

xl


 , (1)

where µ = 1, ...,M denotes the parity index and µ denotes the spin indices involved in the µ-th parity.

The proportion means the normalization of a probability function – i.e., the summation of P (x) for all

possible arguments x – should be 1. We consider a noisy channel with additive white Gaussian noise

(AWGN); i.e., the distribution of the received codes is defined as

P (y|x) ∝
N∏

l

exp
(
− (yl−xl)2

2σ2

)
, (2)

where σ2 denotes the variance of the noise. The posterior probability of the sent code can then be

expressed as

P (x|y) ∝



M∏
µ


1+

∏

l∈µ

xl







[
N∏

l

exp
(
xl

yl

σ2

)]
. (3)

Bethe free energy

The Bethe free energy can be interpreted as approximating the Kullback-Leibler (KL) divergence:

KL(Q(x)||P (x)) ≡
∑
x

Q(x) ln
Q(x)
P (x)

(4)

where P (x) denotes the posterior probability of codes (from here, we omit ‘|y’ for simplicity), and

Q(x) denotes a parameterized distribution. By improving the parameters of Q(x), we minimize the KL

divergence. Bethe approximation divides the posterior probability as

P (x) ∝
[

M∏
µ

P̃µ(xµ)

][
N∏

l

P̃ (xl)1−|l|
]

, (5)

where l denotes the parity indices involving the l-th spin, while

P̃ (xµ) ∝

1+

∏

l∈µ

xl




[
N∏

l

P̃ (xl)

]
, (6)

P̃ (xl) ∝ exp
(
xl

yl

σ2

)
, (7)
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are the approximated marginal distributions. Q(x) and Q(xµ) are defined similarly,

Q(x) ∝
[

M∏
µ

Qµ(xµ)

][
N∏

l

Ql(xl)1−|l|
]

, (8)

Q(xµ) ∝

1+

∏

l∈µ

xl




[
N∏

l

Ql(xl)

]
, (9)

but are limited by an additional restriction:
∑
xµ\l

Q(xµ) = Q(xl), (10)

which demands consistency of the marginal distribution. Also, for Q(x), Q(xµ), and Q(xl), the conditions

of the probability function must hold. Using these approximations, we obtain

KL(Q(x)||P (x)) '
∑
x

Q(x) ln

[∏M
µ Qµ(xµ)

] [∏N
l Ql(xl)1−|l|

]
[∏M

µ P̃µ(xµ)
] [∏N

l P̃l(xl)1−|l|
] (11)

'
M∑
µ

∑
xµ

Qµ(xµ) ln
Qµ(xµ)
P̃µ(xµ)

+
N∑

l

(1−|l|)
∑
xl

Ql(xl) ln
Ql(xl)
P̃l(xl)

(12)

=
M∑
µ

KL(Qµ(xµ)||P̃µ(xµ)) +
N∑

l

(1−|l|) KL(Ql(xl)||P̃l(xl)). (13)

This is called the Bethe free energy.

Lagrange multipliers

To minimize the Bethe free energy, we used Lagrange multipliers λµl(xl). From here on, we write

φµ(xµ), ψl(xl), bµ(xµ), and ql(xl) instead of P̃µ(xµ), P̃l(xl), Qµ(xµ), and Ql(xl), respectively. We also

sometimes omit the arguments of these functions for simplicity. The objective function to minimize is

now

G({bµ}, {ql}, {λµl}) ≡
M∑
µ

∑
xµ

bµ ln
bµ

φµ
+

N∑

l

(1−|l|)
∑
xl

ql ln
ql

ψl
+

M∑
µ

∑

l∈µ

∑
xl

λµl


∑

xµ\l

bµ − ql


 ,(14)

and we solve the following three equations:

0 =
∂G

∂bµ(xµ)
= ln

bµ

φµ
+ 1 +

∑

l∈µ

λµl, (15)

0 =
∂G

∂ql(xl)
= (1−|l|)

(
ln

ql

ψl
+ 1

)
−

∑

µ∈l

λµl, (16)

0 =
∂G

∂λµl(xl)
=

∑
xµ\l

bµ − ql. (17)

Using xl ∈ {+1,−1} and the normalization conditions of distribution functions, we can reduce ql and λµl

to linear functions as

ql(xl) =
1+xl tanh hl

2
, (18)

λµl(xl) = −xlhµl. (19)

We also use ĥµl ≡ hµl + yl

σ2 .
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Belief propagation (BP)

BP first applies the solutions of Eqs. (15) and (16) to G, and then solves Eq. (17), resulting in

ĥµ′l + atanh
∏

l′∈µ′\l
tanh ĥµ′l′ =

1
1−|l|


 yl

σ2
−

∑

µ′′∈l

ĥµ′′l


 (20)

This equation holds for any {l, µ′ ∈ l}. BP replaces the left side of this equation with the average without

µ:

1
1−|l|

∑

µ′∈l\µ


ĥµ′l + atanh

∏

l′∈µ′\l
tanh ĥµ′l′


 =

1
1−|l|


 yl

σ2
−

∑

µ′′∈l

ĥµ′′l


 (21)

We then obtain the decoding algorithm

loop: ĥµl ← yl

σ2
+

∑

µ′∈l\µ
atanh

∏

l′∈µ′\l
tanh ĥµ′l′ , (22)

result: hl ← yl

σ2
+

∑

µ′∈l

atanh
∏

l′∈µ′\l
tanh ĥµ′l′ . (23)

We stop the iteration loop if the estimated sent code, x̂l ≡ sign hl, satisfies all parities, or the number of

loops reaches an upper limit.

Concave convex procedure (CCCP)

CCCP uses a slightly modified Bethe free energy to guarantee the conversion to a local minimum. At

(outer loop) step t, the subsequent parameters, {qt+1}, are determined as extrema of the following

modified free energy,

G̃t ≡ G +
N∑

l

|l|
∑
xl

ql ln
ql

qt
l

(24)

= G +
N∑

l

|l|KL(ql(xl)||qt
l (xl)). (25)

This modification can be interpreted as limiting the distance from the current step to the next step.

Similar to BP, CCCP solves Eqs. (15) and (16), and then solves Eq. (17). However, G is replaced

with G̃t, resulting in the following inner loop. After the conversion of this inner loop, the outer loop is

performed to determine ht+1
l .

inner loop: ĥµl ← 1
2


 yl

σ2
+

∑

µ′∈l\µ
(ht

l − ĥµ′l) + ht
l − atanh

∏

l′∈µ\l
tanh ĥµl′


 , (26)

outer loop: ht+1
l ← yl

σ2
+

∑

µ′∈l

(ht
l − ĥµ′l). (27)
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Bowman-Levin (BL)

There is much similarity among BP, CCCP, and BL. The BL strategy is also similar to that of BP, but

solves Eqs. (15) and (17) first, resulting in the equations to determine {ĥµl} using {hl}. Unfortunately,

these equations need some iteration to be solved:

inner loop: ĥµl ← ht
l − atanh

∏

l′∈µ\l
tanh ĥµl′ . (28)

Applying these results to G, we obtain

G =
N∑

l



ml


− yl

σ2
+

∑

µ∈l

ĥµl


 + (1−|l|)

(
ln cosh

yl

σ2
+

1+ml

2
ln

1+ml

2
+

1−ml

2
ln

1−ml

2

)

 . (29)

Then BL solves (16); i.e.,

0 =
∂G

∂ml
= − yl

σ2
+

∑

µ∈l

ĥµl + (1−|l|)hl, (30)

where ml ≡ tanh hl. Here, we assume

∂ĥµl

∂ml
= 0, (31)

to reduce the calculation cost. We then obtain the following outer loop.

outer loop: ht+1
l ← 1

1−|l|


 yl

σ2
−

∑

µ′∈l

ĥµ′l


 . (32)

After conversion of the inner loop, the outer loop is performed using the converged variables {ĥµl}.
The outer loop of the BL algorithm, however, cannot be solved through simple repeated substitutions;

if we attempt this, the BL algorithm will empirically ascend the Bethe free energy. To avoid ascending

the Bethe free energy, we employ a provisional method; i.e., the simple gradient method:

outer loop: ht+1
l ← ht

l − k
∂G

∂ml
, (33)

where k denotes a small positive step width. With the gradient method, the BL algorithm successfully

converges. The BL performance with the gradient method was slightly worse than that of BP and

noticeably worse than that of CCCP.

Various combinatorial methods with BL are considered possible; e.g., BL with the natural gradient

method, the modified Bethe free energy (Eq. (24)) with a BL approach, and so on. By applying and

comparing these methods, we not only gain a better understanding of how they work, but also can develop

potentially better algorithms than BP or CCCP. Extension to problems other than LDPCC should also

be possible.
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Conclusion

The method we have proposed minimizes the Bethe free energy based on the Bowman-Levin (BL) equa-

tion. We have compared our BL algorithm to those of BP and CCCP with respect to the LDPCC

decoding problem. The BL algorithm empirically ascends the Bethe free energy, while the BL algorithm

combined with the gradient method descends it and converges. Thus, BL is useful not only in allowing us

to compare its mechanisms with those of BP and CCCP, but also in helping to enable the development

of potentially better algorithms.
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