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Abstract— Belief propagation (BP) and the concave convex
procedure (CCCP) are both methods that utilize the Bethe
free energy as a cost function and solve information processing
tasks. We have developed a new algorithm that also uses the
Bethe free energy, but changes the roles of the master variables
and the slave variables. This is called the Bowman-Levin (BL)
approximation in the domain of statistical physics. When we
applied the BL algorithm to decode the Gallager ensemble of
short-length regular low-density parity check codes (LDPCC)
over an additive white Gaussian noise (AWGN) channel, its
average performance was somewhat better than that of either
BP or CCCP. This implies that the BL algorithm can also be
successfully applied to other problems to which BP or CCCP
has already been applied.

I. I NTRODUCTION

Recently, various statistical inference algorithms have be-
come of interest in the field of large-scale information pro-
cessing. Belief propagation (BP) [1] and the concave convex
procedure (CCCP) [2] are among the most effective of the
methods which minimize the Bethe free energy [3], [4]. In the
field of practical application (e.g., the problem of decoding
low-density parity check code (LDPCC) [5], [6]), BP and
CCCP have both been successfully applied [7].

However, they are not the only methods that minimize the
Bethe free energy. In this paper, we focus on the method
of Lagrange undetermined multipliers used by both BP and
CCCP, and derive a new algorithm by exchanging the roles
of master variables and slave variables. This approach, called
Bowman-Levin (BL) approximation [8], is sometimes used in
the field of statistical physics as a way to find an extremum (a
saddle, local minimum, or local maximum) of the Bethe free
energy.

II. L OW DENSITY PARITY CHECK CODE(LDPCC)

The LDPCC decoding problem can be handled within
a Bayesian framework. The prior probability of the codes,

consisting ofN binary bits (x ∈ {+1,−1}N ), is defined as

P (x) ∝
M∏
µ


1+

∏

l∈µ

xl


 , (1)

whereµ = 1, ..., M denotes the parity index andµ denotes the
set of node indices involved in theµ-th parity. Similarly,l =
1, ..., N denotes the bit index andl denotes the set of parity
indices linking to thel-th bit. |µ| and |l| denote the degree
of µ-th parity and thel-th bit, respectively. The proportion
means the normalization of a probability function – i.e., the
summation of the probability for all possible argumentsx –
should be1.

We consider a noisy channel with additive white Gaussian
noise (AWGN); i.e., the probability of the received codesy is
defined as

P (y|x) ∝
N∏

l

exp
(
− (yl−xl)2

2σ2

)
, (2)

where σ2 denotes the variance of the noise. The posterior
probability of the sent code can then be expressed as

P (x|y) ∝



M∏
µ


1+

∏

l∈µ

xl







[
N∏

l

exp
(
xl

yl

σ2

)]
. (3)

To infer the sent codex by y, we employ the maximum
posterior marginal (MPM) solution,

x̂l = arg max
xl

∑
x\l

P (x|y), (4)

which minimizes the bit error rate. On the other hand, the
maximum a posteriori (MAP) solution minimizes the block
error rate,

x̂ = arg max
x

P (x|y), (5)

but is generally difficult to determine because of the exponen-
tial calculation cost.
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Fig. 1. Examples of the parity connection. (a) Tree structure and (b) loopy
structure.

III. B ETHE FREE ENERGY

One purpose of the Bethe free energy approach is to
determine a set of marginal probabilities of a given probability,
which provides the MPM solution here. The Bethe free energy,
F , is defined using Kullback-Leibler (KL) divergence as

F ≡
M∑
µ

KL(bµ(xµ)||φµ(xµ)) (6)

+
N∑

l

(1−|l|)KL(ql(xl)||ψl(xl)),

whereP (x|y) can be represented as

P (x|y) ∝
[

M∏
µ

φµ(xµ)

][
N∏

l

ψl(xl)1−|l|
]

, (7)

φµ(xµ) ∝

1+

∏

l∈µ

xl





∏

l∈µ

ψl(xl)


 , (8)

ψl(xl) ∝ exp
(
xl

yl

σ2

)
, (9)

using (normalized) probability functions,φµ(xµ) and ψl(xl)
in the current case. The introduced test probability functions
of cliques,{bµ(xµ)}, and bits,{ql(xl)}, are required to satisfy
the consistency of the marginal probabilities:

∑
xµ\l

bµ(xµ) = ql(xl) (l ∈ µ). (10)

{bµ(xµ)} and {ql(xl)} that minimize F are expected to
approximate the marginal probabilities ofP (x|y).

The Bethe free energy approach gives the exact marginal
probabilities when the parity connection has the tree structure
(Fig. 1(a)). In such cases, any probability ofx can be ex-
pressed as a product of its marginal probabilities,{bµ(xµ)}
and{ql(xl)}, as

Q(x) =

[
M∏
µ

bµ(xµ)

][
N∏

l

ql(xl)1−|l|
]

. (11)

Then, the Bethe free energy coincides with the KL divergence
between the test and the true probabilities,

F = KL(Q(x)||P (x|y)), (12)

which implies that minimizing the Bethe free energy leads
to the correct probabilityQ(x) = P (x|y), and, therefore,

the exact MPM solution can be assessed from the obtained
{ql(xl)}. Unfortunately, the Bethe free energy does not repre-
sent the KL divergence for loopy graphs (Fig. 1(b)). However,
we here attempt to decode the LDPCC by minimizingF under
the consistency condition (10) expecting that{ql(xl)} well
approximate the marginal probabilities even in the case that
the parity connection does not have the tree structure.

IV. L AGRANGE MULTIPLIERS

To minimize the Bethe free energy under the constraint (10),
we introduce Lagrange undetermined multipliers,λµl(xl). The
objective function to minimize is

G({bµ}, {ql}, {λµl}) ≡ F + L, (13)

where

L ≡
M∑
µ

∑

l∈µ

∑
xl

λµl(xl)


∑

xµ\l

bµ(xµ)− ql(xl)


 , (14)

and we solve the following three equations:

0 =
∂G

∂bµ(xµ)
= ln

bµ(xµ)
φµ(xµ)

+ 1 +
∑

l∈µ

λµl(xl), (15)

0 =
∂G

∂ql(xl)
= (1−|l|)

(
ln

ql(xl)
ψl(xl)

+ 1
)
−

∑

µ∈l

λµl(xl),

(16)

0 =
∂G

∂λµl(xl)
=

∑
xµ\l

bµ(xµ)− ql(xl). (17)

Using xl ∈ {+1,−1} and the normalization conditions of
the probability functions, we can reduceql and λµl to linear
functions as

ql(xl) =
1+xl tanh hl

2
, (18)

λµl(xl) = −xl

(
hµl− yl

σ2

)
+ ζµl. (19)

We also sometimes useml ≡ 〈xl〉ql(xl)
= tanh hl. Using

these expressions, we can reduce Eqs. (15) - (17) to

bµ(xµ) ∝

1+

∏

l∈µ

xl




[
N∏

l

exp(xlhµl)

]
, (20)

hl =
1

|l|−1


∑

µ′∈l

hµ′l − yl

σ2


 , (21)

ml =

∑
xl

xl

∑
xµ\l

bµ(xµ)
∑

xl

∑
xµ\l

bµ(xµ)
, (22)

respectively. From Eqs. (20) and (22), we obtain

hl = hµl + atanh
∏

l′∈µ\l
tanh hµl′ (23)

Now, we have two types of variable:{hl} and{hµl}, and two
types of simultaneous equation: (21) and (23).



V. BELIEF PROPAGATION(BP)

BP considers the double-indexedh, {hµl}, to be the master
variables. Specifically, from Eqs. (21) and (23), we obtain

hµ′l + atanh
∏

l′∈µ′\l
tanh hµ′l′

=
1

|l|−1


 ∑

µ′′∈l

hµ′′l − yl

σ2


 (24)

for any {l, µ′ ∈ l}. BP ingeniously rearranges the left side of
this equation with the average withoutµ:

1
|l|−1

∑

µ′∈l\µ


hµ′l + atanh

∏

l′∈µ′\l
tanh hµ′l′




=
1

|l|−1


 ∑

µ′′∈l

hµ′′l − yl

σ2


 (25)

We then obtain the iterative substitution to converge{hµl}.
loop: hµl ← yl

σ2
+

∑

µ′∈l\µ
atanh

∏

l′∈µ′\l
tanh hµ′l′ . (26)

Once the master variables are determined, we can easily obtain
the slave variables,{hl}, by

result:hl ← yl

σ2
+

∑

µ′∈l

atanh
∏

l′∈µ′\l
tanh hµ′l′ . (27)

To lower the calculation cost, we check whether the esti-
mated sent code,̂xl ≡ sign hl, satisfies all parities for every
loop of Eq. (26). We stop the iteration loop if we reach any
codeword, or the number of loops reaches an upper limit.

VI. CONCAVE CONVEX PROCEDURE(CCCP)

CCCP is a double loop algorithm utilizing convex opti-
mization. The convexity of the Bethe free energy is generally
not guaranteed because of the negative coefficient,1−|l|, of
the second term in Eq. (6). So, CCCP employs the following
additional term at every outer loop stept.

F̃ t ≡F +
N∑

l

|l|KL(ql(xl)||qt
l (xl)) (28)

=
M∑
µ

KL(bµ(xµ)||φµ(xµ)) +
N∑

l

KL(ql(xl)||ψl(xl))

+
N∑

l

|l|ql(xl) ln
ψl(xl)
qt
l (xl)

. (29)

Equation (29) guarantees the convexity ofF̃ t({bµ}, {ql}),
becauseKL divergence function is convex, and the third term
is a linear function. Besides,F necessarily decreases if̃F t

decreases because the additional term is non-negative, and the
additional term itself disappears if{ql} converges.

In the inner loop, similar to BP, CCCP considers the double-
indexedh, {hµl}, to be the master variables. On the other
hand, in the outer loop, single-indexedh, {hl}, are treated as

the master variables. After the convergence of the inner loop,
the outer loop is performed to determineht+1

l .

inner loop:hµl ← 1
2


 yl

σ2
+

∑

µ′∈l\µ
(ht

l − hµ′l)

+ht
l − atanh

∏

l′∈µ\l
tanh hµl′


, (30)

outer loop:ht+1
l ← yl

σ2
+

∑

µ′∈l

(ht
l − hµ′l). (31)

VII. B OWMAN-LEVIN (BL)

BL considers the single-indexedh, {hl}, to be the master
variables. Specifically, BL determines{hµl} by first using
{hl} in Eq. (23). It requires some iteration to be solved,
resulting in an inner loop:

inner loop:hµl ← ht
l − atanh

∏

l′∈µ\l
tanh hµl′ . (32)

Because the determination of the slave variables,{hµl}, de-
pends on the provisional values of the master variables,{hl},
BL also needs a double-loop algorithm. Eq. (21) implies that
update

outer loop:ht+1
l ← 1

|l|−1


∑

µ′∈l

hµ′l − yl

σ2


 , (33)

may be employed for the outer-loop using the converged
variables{hµl}.

Eq. (33), however, does not provides satisfactory results
as this empirically increases the Bethe free energy. This is
because the outer loop (33) is interpreted as

ht+1
l ← ht

l + κ
∂Gt

∂hl
. (34)

where κ ≡ cosh−2 ht
l

|l|−1 is positive. Gt denotesG, which is
regarded as a function of only{hl} at outer-loop stept.

In order to resolve this difficulty, we use the natural gradient
descent method [9] instead of Eq. (33) as

outer loop:ht+1 ← ht
l − kH−1 ∂Gt

∂h
, (35)

wherek denotes a small positive step width, andH denotes
the Fisher information matrix defined as

Hi,j ≡
〈

∂ log Q(x)
∂hi

∂ log Q(x)
∂hj

〉

Q(x)

(36)

=
{

cosh−2 hi (i = j)
0 (i 6= j)

(37)

assuming the following approximation:

Q(x) '
N∏

l

ql(xl). (38)
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Fig. 2. Block (upper three lines) / bit (lower three lines) error rates of
BP, CCCP, and BL algorithms. Configurations were as follows: code length
N = 486, number of paritiesM = 243, degree of parity|—| = 6,
degree of bit|l| = 3 ((3,6)-regular LDPCC), limit of outer loops: 10000
(the limit of loops in the case of BP), number of inner loops fixed as
6 for CCCP and BL, and step widthk = 0.3 in BL. Eb/N0[dB] is
defined as10 log10(1/(2σ2(N−M)/N)). The number of communications
were 103, 3 × 103, 104, 3 × 104, 105, 3 × 105, and 106 for Eb/N0 =
1.0, 1.5, ..., 4.0, respectively. Each error bar denotes a99% confidence
interval based on a binomial distribution.

We then obtain

outer loop:ht+1
l ← ht

l − k


∑

µ∈l

hµl − yl

σ2
− (|l|−1)ht

l


 .

(39)

VIII. V ALIDATION

We validated the performance of the BL algorithm by
comparing it with that of BP and CCCP through a simulation
of the Gallager ensemble of the short-length regular LDPCC.
As the decoding performance greatly depends on the parity
check matrix, the simulation was done over an LDPCC ensem-
ble; that is, we remade the matrix for every communication
according to the Gallager’s construction [5]. We assumed that
the decoder knows the true noise variance of the AWGN
channel,σ2. In the simulation, BL performed somewhat better
than both BP and CCCP.

Figure 2 shows the block and bit error rates of each
algorithm over various signal-to-noise ratios (Eb/N0). BL
performed better than BP and CCCP, especially in the area
whereEb/N0 was around2 dB. The error floor appeared in
the area whereEb/N0 was greater than about2.5 dB. This
error floor probably occurred due to the short loop of the parity
check matrix.

Figure 3 shows that the rate of experiments which pro-
vided decoding success up to a given number of outer-loop
steps. In the early outer-loop steps, BP tended to reach the
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Fig. 3. Time evolution (outer loop steps) of the correctly-decoded rates
(lower three lines) and upper limits defined as(1− [wrongly-decoded rate])
(upper three lines) for BP, CCCP, and BL algorithms. The data corresponds
to the case ofEb/N0 = 2 in Fig. 2.

correct codeword first, and then CCCP and BL followed.
In the later steps, BL continuously improved the rate, while
CCCP had little effect after about the500-th step. The ef-
fect of BP was intermediate. The upper limit line denotes
1− [wrongly-decoded rate], where ‘wrongly-decoded’ denotes
‘reached a wrong codeword.’ The upper limits were almost the
same among the three algorithms. These results suggest that
the BL algorithm will outperform BP and CCCP if we can
afford a high calculation cost – for example,1000 outer-loop
steps.

The calculation cost is roughly proportional to the number
of inner loops (we regard that of BP to be1). So, if we set the
number of inner loops as6 for CCCP and BL, the cost ratio of
BP, CCCP, and BL will be about1 : 6 : 6. If we consider the
average number of outer loops, the difference could become
larger (e.g.,1 : 10 : 12), but this depends on the upper limit
on the number of outer loops.

Parallelization is also an important factor regarding calcula-
tion cost. Briefly, parallelization of the BP loop is possible. It is
also possible for the outer loops of CCCP and BL, but not for
the inner loop of CCCP. On the other hand, it is indispensable
for the inner loop of BL to achieve fast convergence.

Parameter optimization of the three algorithms is a real
problem. In the case of BP, we have to determine only the
upper limit of the outer loops. For CCCP, we also have to
determine the number of inner loops. For BL, in addition to
the CCCP parameters, we have to determine the step width of
the natural gradient descent. Empirically, the configuration of
the step width appears rather robust since the simulated BL
performance generally exceeded that of the other algorithms
(Fig. 2) even though they shared a common step width



configuration (i.e.,k = 0.3).
The optimization of the parity check matrix is also a

problem, especially for short-length LDPCC. We will further
investigate the dependence of these algorithms on the matrix
in our future work.

IX. CONCLUSION

The method we have proposed minimizes the Bethe free
energy based on the Bowman-Levin (BL) approximation. The
BL algorithm combined with the natural gradient descent
method successfully converges. We have compared our BL
algorithm to the belief propagation (BP) and concave convex
procedure (CCCP) algorithms with respect to the decoding
problem of the Gallager ensemble of short-length regular low-
density parity check codes (LDPCC) over an additive white
Gaussian noise (AWGN) channel. Simulation showed that the
BL algorithm outperformed the BP and CCCP algorithms,
although the BL calculation cost was greater. This suggests
that the BL algorithm can be successfully applied to other
problems to which BP or CCCP have already been applied.
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